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CONTINUOUS DATA -- UNIVARIATE CASE

L : iid :
= Suppose we have univariate continuous data y; ~ f, for¢,...,n, where
f is an unknown density.

= Turns out that we can approximate "almost” any f with a mixture of
normals. Usual choices are

1. Location mixture (multimodal):

F) = N (i, 07)

k=1

2. Scale mixture (unimodal and symmetric about the mean, but fatter
tails than a regular normal distribution):

fly) = Z AN (1, 03)
=1

3. Location-scale mixture (multimodal with potentially fat tails):

K
fly) = Z AN (pr, 02)
1
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LOCATION MIXTURE EXAMPLE

f(y) = 0.55N (—10,4) + 0.30A (0,4) + 0.15\ (10, 4)
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SCALE MIXTURE EXAMPLE

f(y) = 0.55\ (0,1) + 0.30N (0,5) + 0.15\ (0, 10)
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LOCATION-SCALE MIXTURE EXAMPLE

f(y) = 0.55N (=10, 1) + 0.30A (0,5) + 0.15A (10, 10)
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LOCATION MIXTURE OF NORMALS

= Consider the location mixture f(y) = Z,If:l AN (g, 02) . How can we
do inference?

= Right now, we only have three unknowns: A = (A1,..., Ak),
= (p1,...,pux), and o2,

= For priors, the most obvious choices are
» 7[A] = Dirichlet(ay,...,ak),

= pp ~ N(po,v;), foreachk=1,...,K, and

2
_ 2NI 14 I/()O'O
o g<27 2 .

= However, we do not want to use the likelihood with the sum in the
mixture. We prefer products!
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DATA AUGMENTATION

= This brings us the to concept of data augmentation, which we actually
already used in the mixture of multinomials.

= Data augmentation is a commonly-used technique for designing MCMC
samplers using auxiliary/latent/hidden variables. Again, we have already
seen this.

= |dea: introduce variable Z that depends on the distribution of the
existing variables in such a way that the resulting conditional
distributions, with Z included, are easier to sample from and/or result in
better mixing.

= /'s are just latent/hidden variables that are introduced for the purpose
of simplifying/improving the sampler.
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DATA AUGMENTATION

= For example, suppose we want to sample from p(z,y), but p(z|y)
and/or p(y|z) are complicated.

= Choose p(z|z,y) such that p(x|y, ), p(y|z, 2), and p(z|z, y) are easy
to sample from. Note that we have p(z, vy, 2) = p(z|z, y)p(x, y)-

= Alternatively, rewrite the model as p(z, y|z) and specify p(z) such that

P, y) = / p(z, y|2)p(2)dz,

where the resulting p(z|y, 2), p(y|z, z), and p(z|x, y) from the joint
p(x,y, z) are again easy to sample from.

= Next, construct a Gibbs sampler to sample all three variables (X,Y, Z)
from p(z, y, 2).

= Finally, throw away the sampled Z's and from what we know about Gibbs
sampling, the samples (X, Y") are from the desired p(z, y).
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LOCATION MIXTURE OF NORMALS

= Back to location mixture f(y) = 22{:1 AN (e, o).
= Introduce latent variable z; € {1,..., K}.

= Then, we have

= yilzi ~ N (ps,0?), and
= PI‘(Zi — k) — )\k = H )\Ii[zz—k:]

= How does that help? Well, the observed data likelihood is now

n

D [Y — (yla" . 7yn)|Z — (z17"' 7zn)?A7 l*"ao-2] — Hp(yi|zi7ﬂ'zz‘70-2)

O which is much easier to work with.




POSTERIOR INFERENCE

= The joint posterior is

7 (Z,p, 0% AlY)

=
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FULL CONDITIONALS

= Fori=1,...,n, sample z; € {1,..., K} from a categorical
distribution (multinomial distribution with sample size one) with
probabilities

Pr[yi7 Zi = k|:u’k7 0'27 )‘k]

Prlz = kl..] = —
Z Pr[yia Zi = l|/~l’l70'27 Al]
=1

Pr[yilzi = k, ,u,k,O'Z] ) PI‘[ZZ' - k|>\k]

K
Z Pr[yi|zi - l,,LLl, 02] : PI‘[ZZ — l|)‘l]
=1

Ak N (ys5 e, 0%)

K
Yo NN (yis , 02)
=1

= Note that \/ (yi; Uk, 02) just means evaluating the density N/ (,uk, 02)
at the value y;.




FULL CONDITIONALS

= Next, sample A = (Ag,..., Ax) from

7T[)\| .. ] = Dirichlet (()41 +ni,...,ax + nK) ,

n
where np = ) 1[z; = k|, the number of individuals assigned to cluster
i=1
k.

= Sample the mean p for each cluster from

mluk|...] = N (pkn, 7,3,71);
. 1 ) ng _ 1
Vi = 01 Hkn = Vien | 2 Yk T ?uo ;
P ’
g ’YO

= Finally, sample o? from

2

w(0?...) = IG (% ”"20'”> .

2 1
Vp =1V + 1 Op — —
C Vp

ot + 3 —w] .
=l




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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