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INTRODUCTION

= As a refresher, suppose y = (y1,- -, ¥Yn) and each y; ~ p(y|@). Suppose
we specify a prior () on 6.

= Then as usual, we are interested in

m(0)p(y, |6) .

O =)

= As we already know, it is often difficult to compute p(y).

= Using the Monte Carlo method or Gibbs sampler, we have seen that we
don't need to know p(y).

= As long as we have conjugate and semi-conjugate priors, we can generate
samples directly from 7(0|y).

= What happens if we cannot sample directly from 7(6|y)?
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MOTIVATING EXAMPLE

= To motivate our discussions on the Metropolis algorithm, let's explore a
simple example.

= Suppose we wish to sample from the following density

1 1
-— 1 ——=(6-3)
w(0ly) cexp 2 + 5 €XP 2

= This is a mixture of two normal densities, one with mode near 0 and the
other with mode near 3.

= Note: we will cover finite mixture models properly soon.

= Anyway, let's use this density to explore the main ideas behind the
Metropolis sampler.

= By the way, as you will see, we don't actually need to know the
normalizing constant for Metropolis sampling but for this example, find it
for practice!




MOTIVATING EXAMPLE

m |et's take a look at the (normalized) density:
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= There are other ways of sampling from this density, but let's focus
specifically on the Metropolis algorithm here.




METROPOLIS ALGORITHM

= From a sampling perspective, we need to have a large group of values,
o) ..., 0 from m(8|y) whose empirical distribution approximates

m(0]y).

= That means that for any two values a and b, we want

#00) =a  #09 =b #09=gq S  #09=a m(0=aly
S ' s S . 4#06) =b  #06) =b w0 =bly)
= Basically, we want to make sure that if a and b are plausible values in
7(8y), the ratio of the number of the 1), ..., (%) values equal to
m(60 = aly)

them properly approximates

(0 = bly)

= How might we construct a group like this?
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METROPOLIS ALGORITHM

= Suppose we have a working group 9(1), Cey (%) at iteration s, and need

to add a new value 8611,

= Consider a candidate value 6* that is close to 8(5) (we will get to how to

generate the candidate value in a minute). Should we set 811 = 6* or
not?

= Well, we should probably compute 7(6*|y) and see if
m(6"]y)

7(6*|y) > w(8)|y). Equivalently, look at 7 = 0O

= By the way, notice that

n(0*ly)  p(yle)n(#) | p(ylo@)m (")

7(6)|y) p(y) ' p(y)
_ple)n0) ) _ p(yl8)m(e)
p(y) p(y|0N)m(09)  p(y|o@)m(6))’

: which does not depend on the marginal likelihood we don't know!
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METROPOLIS ALGORITHM

m fr>1

= Intuition: 8% is already a part of the density we desire and the
density at 6* is even higher than the density at 6(%),

= Action: set (51 — g

m fr <1,
= Intuition: relative frequency of values on our group 8, ... 60
. (6" |y) (5)
equal to 8" should be ~ r = ————. For every 6"/, include only
m(0)]y)

a fraction of an instance of 6*.

= Action: set 865t = §* with probability r and 841 = 9(¢) with
probability 1 — r.
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METROPOLIS ALGORITHM

= This is the basic intuition behind the Metropolis algorithm.

= Where should the proposed value 6* come from?

= Sample 6" close to the current value o(s) using a symmetric proposal
distribution g[*|@(*)]. g is actually a "family of proposal distributions",
indexed by the specific value of ().

= Here, symmetric means that g[6*|0(*)] = g[0(*)|6"].

= The symmetric proposal is usually very simple with density concentrated

near ), for example, N (6*;0'), §2) or Unif(6*; 6(®) — 6,00 + 6).

= After obtaining 0*, either add it or add a copy of () to our current set
of values, depending on the value of r.
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METROPOLIS ALGORITHM

= The algorithm proceeds as follows:
1. Given 1) ... (%) generate a candidate value 8* ~ g[6*|0\*)].

2. Compute the acceptance ratio

_ m(@y)  p(ylo")w(0)

C w(09)y)  p(yo)m(6)

3. Set

gty _ ¥ with probability min(r, 1)
a { o) with probability 1 — min(r,1)

which can be accomplished by sampling u ~ U(0, 1) independently
and setting

Qo+l — 0" if u<r .
6(s) if otherwise




METROPOLIS ALGORITHM

= Once we obtain the samples, then we are back to using Monte Carlo
approximations for quantities of interest.

= That is, we can again approximate posterior means, quantiles, and other
quantities of interest using the empirical distribution of our sampled
values.

= Some notes:

= The Metropolis chain ALWAYS moves to the proposed 6* at iteration
s + 1 if 8" has higher target density than the current 6(s),

= Sometimes, it also moves to a 6* value with lower density in
proportion to the density value itself.

= This leads to a random, Markov process than naturally explores the
space according to the probability defined by 7(60|y), and hence

generates a sequence that, while dependent, eventually represents
draws from 7(0|y).

10/ 15



METROPOLIS ALGORITHM: CONVERGENCE

= We will not cover the convergence theory behind Metropolis chains in
detail, but below are a few notes for those interested:

= The Markov process generated under this condition is ergodic and has
a limiting distribution.

= Here, think of ergodicity as meaning that the chain can move
anywhere at each step, which is ensured, for example, if

gl6*|6*)] > 0 everywhere!

= By construction, it turns out that the Metropolis chains are
reversible, so that convergence to m(6|y) is assured.

= Think of reversibility as being equivalent to symmetry of the joint
density of two consecutive 62) and A1) in the stationary process,
which we do have by using a symmetric proposal distribution.

= |f you want to learn more about convergence of MCMC chains, consider
taking one of the courses on stochastic processes, or Markov chain

theory.
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METROPOLIS ALGORITHM: TUNING

= Correlation between samples can be adjusted by selecting optimal
(i.e., spread of the distribution) in the proposal distribution

= Decreasing correlation increases the effective sample size, increasing
rate of convergence, and improving the Monte Carlo approximation to the
posterior.

= However,

= § too small leads to r» &~ 1 for most proposed values, a high
acceptance rate, but very small moves, leading to highly correlated
chain.

= ¢ too large can get "stuck” at the posterior mode(s) because 6* can
get very far away from the mode, leading to a very low acceptance
rate and again high correlation in the Markov chain.

= Thus, good to implement several short runs of the algorithm varying 9
and settle on one that yields acceptance rate in the range of 25-50%.

= Burn-in (and thinning) is even more important here!
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METROPOLIS IN ACTION

Back to our example with

1 1
-— 1 ——=(0-3)?
n(0ly) < exp 2 —|—§exp 2
(6ly)
S
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MOVE TO THE R SCRIPT HERE.
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https://sta-602l-s21.github.io/Course-Website/slides/Metropolis-I.R

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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