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BAYESIAN HYPOTHESIS TESTING

How to do Bayesian hypothesis testing for a simple model?

Suppose we have univariate data  and wish to test 
 under the Bayesian paradigm.

Informal approach:

1. Put a prior on , .

2. Compute posterior  for updated
parameters  and .

3. Compute a 95% CI based on the posterior.

4. Reject  if interval does not contain zero.

yi
iid
∼ N (μ, 1)

H0 : μ = 0;   vs.H1 : μ ≠ 0

μ π(μ) = N (μ0,σ2
0)

μ|Y = (y1, … , yn) ∼ N (μn,σ2
n)

μn σ2
n

H0
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BAYESIAN HYPOTHESIS TESTING

Formal approach:

1. Put a prior on the actual hypotheses/models, that is, on 
 and .

For example, set  and , if apriori, we
believe the two hypotheses are equally likely.

2. Put a prior on the parameters in each model.

In our simple normal model, the only unknown parameter is , so for
example, our prior can once again be .

3. Compute marginal posterior probabilities for each hypothesis, that is,
 and . Can start with the joint posterior between

each hypothesis and the parameter, then integrate out the
parameter.

4. Conclude based on the magnitude of  relative to .

π(H0) = Pr(H0 = True) π(H1) = Pr(H1 = True)

π(H0) = 0.5 π(H1) = 0.5

μ
π(μ) = N (μ0,σ2

0)

π(H0|Y ) π(H1|Y )

π(H1|Y ) π(H0|Y )
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BAYESIAN HYPOTHESIS TESTING

Using Bayes theorem,

where  and  are the marginal likelihoods for the data
under the null and alternative hypotheses respectively.

If for example we set  and  apriori, then

The ratio  is known as the Bayes factor in favor of , and often

written as . Similarly, we can compute .

π(H1|Y ) = ,
p(Y |H1)π(H1)

p(Y |H0)π(H0) + p(Y |H1)π(H1)

p(Y |H0) p(Y |H1)

π(H0) = 0.5 π(H1) = 0.5

π(H1|Y ) =

= = .

0.5p(Y |H1)

0.5p(Y |H0) + 0.5p(Y |H1)

p(Y |H1)

p(Y |H0) + p(Y |H1)

1

+ 1
p(Y |H0)

p(Y |H1)

p(Y |H0)

p(Y |H1)
H0

BF 01 BF 10
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BAYES FACTORS

Bayes factor: is a ratio of marginal likelihoods and it provides a weight of
evidence in the data in favor of one model over another.

It is often used as an alternative to the frequentist p-value.

Rule of thumb:  is strong evidence for ;  is
decisive evidence for .

Notice that for our example,

the higher the value of , that is, the weight of evidence in the data
in favor of , the lower the marginal posterior probability that  is
true.

That is, here, as , .

BF 01 > 10 H0 BF 01 > 100
H0

π(H1|Y ) = =
1

+ 1
p(Y |H0)

p(Y |H1)

1

BF 01 + 1

BF 01

H0 H1

BF 01 ↑ π(H1|Y ) ↓
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BAYES FACTORS

Let's look at another way to think of Bayes factors. First, recall that

so that

Therefore, the Bayes factor can be thought of as the factor by which our
prior odds change (towards the posterior odds) in the light of the data.

In linear regression, BIC approximates the  comparing a model to the
null model.

π(H1|Y ) = ,
p(Y |H1)π(H1)

p(Y |H0)π(H0) + p(Y |H1)π(H1)

= ÷

= ×

∴


posterior odds

=


prior odds

×


Bayes factor BF 01

π(H0|Y )

π(H1|Y )

p(Y |H0)π(H0)

p(Y |H0)π(H0) + p(Y |H1)π(H1)

p(Y |H1)π(H1)

p(Y |H0)π(H0) + p(Y |H1)π(H1)

p(Y |H0)π(H0)

p(Y |H0)π(H0) + p(Y |H1)π(H1)

p(Y |H0)π(H0) + p(Y |H1)π(H1)

p(Y |H1)π(H1)

π(H0|Y )

π(H1|Y )

π(H0)

π(H1)

p(Y |H0)

p(Y |H1)

BF
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BAYES FACTORS

While Bayes factors can be appealing, calculating them can be
computationally demanding.

Why have we been "mildly obsessed" with MCMC sampling? To avoid
computing any marginal likelihoods! Well, guess what? Bayes factors are
ratios of marginal likelihoods, taking us back to the problem we always
try to avoid.

Of course this isn't all "doom and gloom", there are various ways (once
again!) of getting around computing those likelihoods analytically.

Unfortunately, we will not have time to cover them in this course.
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BAYES FACTORS

As a teaser, one approach is to flip the relationship on the previous slide:

which is easy to compute as long as we can use posterior samples to
compute/approximate the posterior odds.

Bayes factors can work well when the underlying model is discrete but do
not work well for models that are inherently continuous.

For more discussions on this, see Chapter 7.4 of Bayesian Data Analysis
(Third Edition).

Even in the discrete case, Bayes factors are not perfect, as we see in the
following example.


Bayes factor BF 01

=


posterior odds

×


prior odds

,
p(Y |H0)

p(Y |H1)

π(H0|Y )

π(H1|Y )

π(H1)

π(H0)
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https://find.library.duke.edu/catalog/DUKE006588051?utm_campaign=bento&utm_content=bento_result_link&utm_source=library.duke.edu&utm_medium=referral


HYPOTHESIS TESTING EXAMPLE

Suppose we have univariate data .

Also, suppose we wish to test , using the
Bayes factor.

First, we need to put priors on the two hypotheses. Again, if apriori we
believe the two hypotheses are equally likely, then we can set

Next, we need to put priors on the parameters in each model.

When  is true, we have that  and so there's no need for a
prior on .

When  is true, we can set a conjugate prior for , that is, 
.

y1, … , yn|θ ∼ Bernoulli(θ)

H0 : θ = 0.5  vs. H1 : θ ≠ 0.5

π(H0) = Pr(H0 = True) = 0.5;   π(H1) = Pr(H1 = True) = 0.5.

H0 θ = 0.5
θ

H1 θ
Beta(a, b)
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HYPOTHESIS TESTING EXAMPLE

To compute the Bayes factor, we need to compute  and 
.

For each, we need to start with the joint distribution of the data and
parameter, given each hypothesis, then integrate out the parameter.

For , we have

p(Y |H0)
p(Y |H1)

p(Y |H0)

p(Y |H0) = ∫
1

0

p(Y , θ|H0)dθ

= ∫
1

0

p(Y |H0, θ) ⋅ π(θ|H0)dθ

= ∫
1

0

p(Y |θ = 0.5) ⋅ 1 dθ

= ∫
1

0

0.5∑
n

i=1 yi(1 − 0.5)n−∑n
i=1 yi ⋅ 1 dθ

= 0.5n ∫
1

0

1 dθ

= 0.5n
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HYPOTHESIS TESTING EXAMPLE

For , we have

Bayes factor in favor of , , is therefore

Also,

p(Y |H1)

p(Y |H1) = ∫
1

0
p(Y |H1, θ) ⋅ π(θ|H1)dθ

= ∫
1

0
θ∑

n

i=1 yi(1 − θ)n−∑
n

i=1 yi ⋅ θa−1(1 − θ)b−1dθ

= ∫
1

0
θa+∑

n

i=1 yi−1(1 − θ)b+n−∑
n

i=1 yi−1dθ

=

1

B(a, b)

1

B(a, b)

B(a +∑
n
i=1 yi, b + n −∑

n
i=1 yi)

B(a, b)

H0 BF 01

BF 01 = = .
p(Y |H0)

p(Y |H1)

0.5nB(a, b)

B(a +∑
n

i=1 yi, b + n −∑
n

i=1 yi)

π(H1|Y ) = = .
1

BF 01 + 1

1

+ 1
0.5nB(a,b)

B(a+∑
n

i=1 yi,b+n−∑
n

i=1 yi)
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HYPOTHESIS TESTING EXAMPLE

Suppose the true value of . Suppose that in  trials, we
observe  successes, that is, .

If we assume a  prior on , then  is

0.5^20*beta(1,1)/beta(1+13,1+7)

## [1] 1.552505

On the other hand, . So that even though based on the

data, our estimate of  is , we still have stronger
evidence in favor of  over , which is interesting!

There are a few contributing factors, including the sample size, our
choice of prior, and how far  is from the true .

You will explore this in more detail on the homework.

θ = 0.6 n = 20
13 ∑

n

i=1 yi = 13

Beta(a = 1, b = 1) θ BF 01

BF 10 ≈ 0.64

θ θ̂ = = 0.6513
20

H0 H1

θ̂ θ
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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