STA 360/602L: MobuLE 6.3

BAYESIAN LINEAR REGRESSION: WEAKLY
INFORMATIVE PRIORS

DrR. OLANREWAJU MICHAEL AKANDE

1716



BAYESIAN LINEAR REGRESSION RECAP

= Sampling model:
Y ~ Ny (XB, 0% Lor).
= Semi-conjugate prior for B:
(8) = Np(1o, ¥o)-

= Semi-conjugate prior for o?:
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WEAKLY INFORMATIVE PRIORS

m Specifying hyperparameters that represent actual prior information can
be challenging, especially for 8.

= |t can therefore be desirable use weakly informative priors when
possible. The Hoff book discusses a few different options, one of which is
the Zellner's g-prior (there are other options but we will not cover them
in this course).

= Note that we can also use Jefferys prior here to be completely non-
informative.

= Zellner's g-prior is

(Blo?) =Ny (IJ'O =0,%) = go? [XTX]_l)
2
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for some positive value g, which is often commonly set to the sample size
n.
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WEAKLY INFORMATIVE PRIORS

= Note that the g-prior uses a part of the data. As | have mentioned before,
using your data to construct your prior is usually a no-no.

= However, the g-prior actually does not use the information in y, the
response variable of interest, just the information in X.

= Observe that the prior specification actually looks like the conjugate
prior we first used for the univariate normal model, that is, with
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= Turns out that we also have conjugacy with the g-prior, so that we don't
actually need Gibbs sampling to obtain posterior samples. ﬂ(ﬂ]y, X, 02)

takes the same form as before but now we also have m(c?|y, X).




WEAKLY INFORMATIVE PRIORS

= With the g-prior, we have
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where SSR(g) = y* (I — —X(XTX) XT)y. See the Hoff book

for the proof, and see homework for illustration.




EXAMPLE

= Health plans use many tools to try to control the cost of prescription
medicines.

= For older drugs, generic substitutes that are the equivalent to name-
brand drugs are available at considerable savings.

= Another tool that may lower costs is restricting drugs that the physician
may prescribe.

= For example if three similar drugs for treating the same condition are
available, a health plan may require the physician to prescribe only one
of them, allowing the plan to negotiate discounts based on a higher
volume of sales.

= We have data from 29 health plans can be used to explore the
effectiveness of these two strategies in controlling drug costs.

= The response is COST, the average cost of the prescriptions to the plan
per day (in dollars).
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EXAMPLE

= Explanatory variables are:

RXPM: Average number of prescriptions per member per year
GS: Percent generic substitute used by the plan

RI: Restrictiveness Index, from 0 (no restrictions) to 100 (total
restrictions on the physician)

COPAY: Average member copay on prescriptions

AGE: Average member age

F: percent female members

MM: Member months, a measure of the size of the plan
ID: an identifier for the name of the plan

» The data is in the file costs.txt on Sakai.

= For this illustration, we will restrict ourselves to GS and AGE. We will use

the other variables later.
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DATA

#require(lattice)
#library(pls)
#library(calibrate)
#library(mvtnorm)

#u#### Data
Data <- read.table("data/costs.txt",header=TRUE)[,-9]

head (Data)

H# COST RXPM GS RI COPAY AGE F MM
## 1 1.34 4.2 36 45.6 10.87 29.7 52.3 1158096
## 2 1.34 5.4 37 45.6 8.66 29.7 52.3 1049892
## 3 1.38 7.0 37 45.6 8.12 29.7 52.3 96168
## 4 1.22 7.1 40 23.6 5.89 28.7 53.4 407268
## 5 1.08 3.5 40 23.6 6.05 28.7 53.4 13224
## 6 1.16 7.2 46 22.3 5.05 29.1 52.2 303312
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VERY BasIC EDA
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VERY BAsIC EDA

levelplot(cor(Datal[,c("COST","GS","AGE")])) #Check correlation
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VERY BasIC EDA

Without outlier:
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VERY BASIC EDA

Without outlier:

levelplot(cor(Data[-19,c("COST","GS","AGE")])) #Check correlation
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POSTERIOR COMPUTATION

#i##t# g-Prior: with g=n using full model

# Data summaries

X <= cbind(l,as.matrix(Data[-19,c("GS","AGE")])) #remove potential outlier
Y <- matrix(Data$COST[-19],ncol=1)

n <- length(Y)

p <- ncol(X)

g <-n

# OLS estimates
beta_ols <- solve (t(X)%*x%X)%*x%t (X)%x%Y
round(t(beta_ols),4)

## GS AGE
## [1,] 2.7047 -0.02 -0.0231

SSR_beta_ols <= (t(Y - (X%x%beta_ols)))%*x%(Y - (X%*%beta_ols))
sigma_ols <- SSR_beta_ols/(n-p)
sigma_ols

#it [,1]
## [1,] 0.005247074

# Hyperparameters for the priors
#sigma_0_sq <- sigma_ols
sigma_0_sq <- 1/100

nu_0 <- 1

# Set number of iterations
S <- 10000
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POSTERIOR COMPUTATION

set.seed(1234)

# Sample sigma_sq

nu_n <- nu_0 + n

Hg <- (g/(g+1l))* X%x%solve (t(X)%x%X)%x%t (X)

SSRg <- t(Y)%*%(diag(l,nrow=n) - Hg)%*%Y
nu_n_sigma_n_sq <- nu_0O*sigma_0_sq + SSRg

sigma_sq <- 1/rgamma(S, (nu_n/2),(nu_n_sigma_n_sq/2))

# Sample beta

mu_n <- gxbeta_ols/(g+1)

beta <- matrix(nrow=S,ncol=p)

for(s in 1:S5){
Sigma_n <- gxsigma_sq[s]xsolve(t(X)%*x%X)/(g+1)
beta[s,] <- rmvnorm(l,mu_n,Sigma_n)

}

#posterior summaries
colnames(beta) <- colnames(X)
mean_beta <- apply(beta,2,mean)
round (mean_beta,4)

# GS AGE
## 2.6057 -0.0193 -0.0221

round (apply(beta,2,function(x) quantile(x,c(0.025,0.975))),4)

#4# GS AGE
## 2.5% 0.4392 -0.0432 -0.0935
## 97.5% 4.7903 0.0044 0.0460
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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