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BAYESIAN LINEAR REGRESSION RECAP

= Sampling model:
Y ~ Ny (XB, 0% Lor).
= Semi-conjugate prior for B:
(8) = Np(1o, ¥o)-

= Semi-conjugate prior for o?:
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SWIMMING DATA

= Back to the swimming example. The data is from Exercise 9.1 in Hoff.

= The data set we consider contains times (in seconds) of four high school
swimmers swimming 50 yards.

Y <- read.table("http://www2.stat.duke.edu/~pdhl0/FCBS/Exercises/swim.dat")
Y

#4# V1 V2 V3 V4 V5 V6
## 1 23.1 23.2 22.9 22.9 22.8 22.7
## 2 23.2 23.1 23.4 23.5 23.5 23.4
## 3 22.7 22.6 22.8 22.8 22.9 22.8
## 4 23.7 23.6 23.7 23.5 23.5 23.4

= There are 6 times for each student, taken every two weeks. That is, each
swimmer has six measurements at t = 2,4, 6, 8, 10, 12 weeks.

= Each row corresponds to a swimmer and a higher column index indicates
a later date.
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SWIMMING DATA

= Given that we don't have enough data, we can explore hierarchical
models. That way, we can borrow information across swimmers.

= For now, however, we will fit a separate linear regression model for each
swimmer, with swimming time as the response and week as the
explanatory variable (which we will mean center).

= For setting priors, we have one piece of information: times for this age
group tend to be between 22 and 24 seconds.

= Based on that, we can set uninformative parameters for the prior on o?

and for the prior on B, we can set

s (3) 2 (2 2)

= This centers the intercept at 23 (the middle of the given range) and the
slope at 0 (so we are assuming no increase) but we choose the variance
to be a bit large to err on the side of being less informative.
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POSTERIOR COMPUTATION

#Create X matrix, transpose Y for easy computayion
Y <= t(Y)

n_swimmers <- ncol(Y)

n <- nrow(Y)

W <- seq(2,12,1length.out=n)

X <= cbind(rep(1,n), (W-mean(W)))

p <- ncol(X)

#Hyperparameters for the priors

mu_0 <- matrix(c(23,0),ncol=1)

Sigma_0 <- matrix(c(5,0,0,2),nrow=2,ncol=2)
nu_0 <- 1

sigma_0_sq <- 1/10

#Initial values for Gibbs sampler

#No need to set initial value for sigma’2, we can simply sample it first
beta <- matrix(c(23,0),nrow=p,ncol=n_swimmers)

sigma_sq <- rep(l,n_swimmers)

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

#Set null matrices to save samples

BETA <- array(0,c(n_swimmers,n_iter,p))
SIGMA_SQ <- matrix(0,n_swimmers,n_iter)
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POSTERIOR COMPUTATION

#Now, to the Gibbs sampler
#library(mvtnorm) for multivariate normal

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

for(s 1in 1:(n_iter+burn_in)){
for(j in 1l:n_swimmers){

#update the sigma_sq

nu_n <- nu_0 + n

SSR <= t(Y[,j] - X%*%betal[,j]1)%*x%(Y[,j] - X%x*%betal,j])
nu_n_sigma_n_sq <- nu_0*sigma_0_sq + SSR

sigma_sq[j] <- 1/rgamma(l,(nu_n/2),(nu_n_sigma_n_sq/2))

#update beta

Sigma_n <- solve(solve(Sigma_0) + (t(X)%x%X)/sigma_sql[j])

mu_n <- Sigma_n %*% (solve(Sigma_0)%x%mu_0 + (t(X)%x%Y[,j]1)/sigma_sql[j]l)
betal[,j] <= rmvnorm(l,mu_n,Sigma_n)

#save results only past burn-in
if(s > burn_in){
BETA[j, (s-burn_in),] <- betal,j]
SIGMA_SQ[j, (s-burn_in)] <- sigma_sql[j]
}
+
}
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RESULTS

= Before looking at the posterior samples, what are the OLS estimates for
all the parameters?

beta_ols <- matrix(0,nrow=p,ncol=n_swimmers)

for(j in 1l:n_swimmers){

beta_ols[,j] <- solve(t(X)%*x%X)%x%t(X)%*%Y[,7]

}

colnames(beta_ols) <- c("Swimmer 1","Swimmer 2" ,"Swimmer 3" ,"Swimmer 4")
rownames (beta_ols) <- c("beta_0","beta_1")

beta_ols

H## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0 22.93333333 23.35000000 22.76667 23.56666667
## beta_1l -0.04571429 0.03285714 0.02000 -0.02857143

= Can you interpret the parameters?

= Any thoughts on who the coach should recommend based on this alone? Is
this how we should be answering the question?
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POSTERIOR INFERENCE

m Posterior means are almost identical to OLS estimates.

beta_postmean <- t(apply(BETA,c(1,3),mean))

colnames(beta_postmean) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames (beta_postmean) <- c("beta_0","beta_1")

beta_postmean

## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0 22.9339174 23.34963191 22.76617785 23.56614309
## beta_l -0.0453998 0.03251415 0.01991469 -0.02854268

= How about credible intervals?

beta_postCI <- apply(BETA,c(1,3),function(x) quantile(x,probs=c(0.025,0.975)))
colnames (beta_postCI) <- c("Swimmer 1","Swimmer 2" ,"Swimmer 3" ,"Swimmer 4")
beta_postCI[,,1]; beta_postCI[,,2]

H## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## 2.5% 22.76901 23.15949 22.60097 23.40619
## 97.5% 23.09937 23.53718 22.93082 23.73382

H## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## 2.5% -0.093131856 -0.02128792 -0.02960257 -0.07704344
## 97.5% 0.002288246 0.08956464 0.06789081 0.01940960
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POSTERIOR INFERENCE

= |s there any evidence that the times matter?

beta_pr_great_0 <- t(apply(BETA,c(1,3),function(x) mean(x > 0)))
colnames(beta_pr_great_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames (beta_pr_great_0) <- c("beta_0","beta_1")

beta_pr_great_0

## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0 1.0000 1.0000 1.0000 1.0000
## beta_1l 0.0287 0.9044 0.8335 0.0957

#or alternatively,

beta_pr_less_0 <- t(apply(BETA,c(1,3),function(x) mean(x < 0)))
colnames(beta_pr_less_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames (beta_pr_less_0) <- c("beta_0","beta_1")

beta_pr_less_0

## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0 0.0000 0.0000 0.0000 0.0000
## beta_1l 0.9713 0.0956 0.1665 0.9043
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POSTERIOR PREDICTIVE INFERENCE

= How about the posterior predictive distributions for a future time two
weeks after the last recorded observation?

x_new <- matrix(c(l,(l4-mean(W))),ncol=1)

post_pred <- matrix(0,nrow=n_iter,ncol=n_swimmers)

for(j in 1l:n_swimmers){

post_pred[,j] <- rnorm(n_iter,BETA[],,]%*%x_new,sqrt(SIGMA_SQ[j,]))
}

colnames(post_pred) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")

plot(density(post_pred[,"Swimmer 1"]),col="red3",xlim=c(21.5,25),ylim=c(0,3.5),lwd=1.
main="Predictive Distributions",xlab="swimming times")
legend("topleft",2,c("Swimmerl","Swimmer2","Swimmer3","Swimmer4"),col=c("red3","blue:
lines(density(post_pred[,"Swimmer 2"]),col="blue3",lwd=1.5)
lines(density(post_pred[,"Swimmer 3"]),col="orange2",lwd=1.5)
lines(density(post_pred[,"Swimmer 4"]),lwd=1.5)
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POSTERIOR PREDICTIVE INFERENCE
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POSTERIOR PREDICTIVE INFERENCE

= How else can we answer the question on who the coach should
recommend for the swim meet in two weeks time? Few different ways.

= Let Y}* be the predicted swimming time for each swimmer 3. We can do

the following: using draws from the predictive distributions, compute the
posterior probability that P(Y* = min(Y}", ¥,", ¥;*,Y,")) for each

swimmer 7, and based on this make a recommendation to the coach.

= That is,

post_pred_min <- as.data.frame(apply(post_pred,1,function(x) which(x==min(x))))
colnames(post_pred_min) <- "Swimmers"

post_pred_min$Swimmers <- as.factor(post_pred_min$Swimmers)
levels(post_pred_minSSwimmers) <- c("Swimmer 1","Swimmer 2" ,"Swimmer 3","Swimmer 4")
table(post_pred_min$Swimmers) /n_1iter

##
## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
H#t 0.7790 0.0078 0.1994 0.0138

= Which swimmer would you recommend?
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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