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MOTIVATING EXAMPLE

m Let's consider the problem of predicting swimming times for high school
swimmers to swim 50 yards.

= We have data collected on four students, each with six times taken
(every two weeks).

= Suppose the coach of the team wants to use the data to recommend one
of the swimmers to compete in a swim meet in two weeks time.

= Since we want to predict swimming times given week, one option would
be regression models.

= |n a typical regression setup, we store the predictor variables in a matrix
anp, so n is the number of observations and p is the number of

variables.

= You should all know how to write down and fit linear regression models of
the most common forms, so let's only review the most important details.
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NORMAL REGRESSION MODEL

= The model assumes the following distribution for a response variable Y;
given multiple covariates/predictors @; = (1, Z;1, Ti2, - - - 5 Tip—1))-

Y; = Bo + Bixi + BoTio + - - + Bp_1Tip-1) T €5 € Y N(0,0?).
or in vector form for the parameters,
Y, =Tz +e; & N(0,0%),
where B8 = (B, B1, B2y - -+, Bp—1)-
= We can also write the model as:
Y: XN (B i, 0%);
p(yilw:) = N (B @i, 0?).

= That is, the model assumes E[Y'|x] is linear.




LIKELIHOOD

= Given that we have Y; % (B x;,0?), the likelihood is

n
p(ym oo 7yn|m1a .. '7wn7187 02) — Hp(yz|w27:87 02

= From all our work with normal models, we already know it would be
convenient to specify a (multivariate) normal prior on B and a gamma

prior on 1/, so let's start there.

= Two things to immediately notice:

= since B is a vector, it might actually be better to rewrite this kernel
in multivariate form altogether, and

= when combining this likelihood with the prior kernel, we will need to
find a way to detach 8 from x;.




MULTIVARIATE FORM

m Let
le 1 T11
Y, 1 zo9
L YTL . i 1 Tni

T12

Z22

Tn2

Z1(p-1)

L2(p—1)

Tn(p-1) |

= Then, we can write the model as

= That is, in multivariate form, we have

Y = XB+¢€ €~ N,(0,0L,,,).

- B
B1
B2

Bp—l i

Y ~ Nn(Xﬂa U2Ian)°
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FREQUENTIST ESTIMATION RECAP

OLS estimate of B is given by
Bols = (XTX)_ley'

Predictions can then be written as

§=XBu = X |(XTX) ' XTy| = [ X(X7X) ' X"|y.

The variance of the OLS estimates of all p coefficients is

Var [,éols] = 5" (XTX)_I.

Finally,

32 . (y _ X:éols)T(y — X:éols)
e — n—p .




BAYESIAN SPECIFICATION

= The likelihood for the regression model becomes
PIX. 8,0%) o (¢2) % exp {57~ XB)"(w— XB)
x (02) 7% exp {_ﬁ [y"y — 28" X"y + BT XT X ] } .
o

= We can start with the following semi-conjugate prior for 3:
7-‘-(:8) = '/V;’(IJ’Oa EO)

= That is, the pdf is
p _ 1 ].
(8) = ) H 5l F exp { -5 (8- w0556 - ) |
= Recall from our multivariate normal model that we can write this pdf as

m(B) o exp {—%ﬂTEglﬂ + BTﬁgluo} :




MULTIVARIATE NORMAL MODEL RECAP

= To avoid doing all work from scratch, we can leverage results from the
multivariate normal model.

= In particular, recall that if Y ~ N,(6, ),

p(y|0, %) x exp {—%OT(El)O + OT(Elg)}

and
0 ! 0TA 10+ 6TA !
7(6) o exp —50 A0+ o Mo
= Then
1
(0|2, y) o exp {—EBT [Aal + 2_1} 0+67 [Aaluo + E_lgﬂ } = Np(pn, An)
where

Ao = (A7 + 57

o = An (A5 pto +Z715]



POSTERIOR COMPUTATION

= For inference on B, rewrite the likelihood as

p(y| X, B,0%) ox (%) F exp {_ ;7 [y"y - 28" X"y + BT X7 XB] }

X exp {— % BTXTXB—28"X"y] }

x exp {—%ﬁT (%XTX) B+ BT (%XTy) } :
= Again, with the prior written as

m(B) o< exp {—%ﬂTZ(}lﬂ + ﬂTEaluo} :

both forms look like what we have on the previous page. It is then easy to
read off the full conditional for 3.



POSTERIOR COMPUTATION

= That is,

m(Bly, X, %) < p(y| X, B,0?) - n(B)
1 T -1 1 T T =il 1 T
ocexp{—E,B [20 + —2X X] B+ lEO Mo + —2X y]}
o g
= Np(Kn, Zn).
= Comparing this to the prior
1
m(B) o exp {—EﬂTE(}lﬂ + BTE(Iluo} ;
means
— 1l 1 o7 -
En — [20 + ;X X]

_ -1 1 o7
[T Y DIN uo+—2X y| .
o




POSTERIOR COMPUTATION

= Next, we move to o2. From previous work, we already know the inverse-
gamma distribution with be semi-conjugate.

b
= First, recall that ZG(y; a, b) = %y(aﬂ)e Y.

40 VOG(%
= So, if we set m(0?) = ZG 5 g | e have

m(o’y, X, B) x p(y| X, B,0?) - n(c”)




POSTERIOR COMPUTATION

= That is,
6 T B s )5 e {_ ( 0 ) (v = %)ty X) }
< (0 )<%“>e<"12) VO?UO]
B
o[58
where

v =vo+m; 0h= [} + (y— XB)T(y — XB)] = —[ugo? + SSR(B) .

n VTL

= (y — XB)T(y — X ) is the sum of squares of the residuals (SSR).




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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