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READING COMPREHENSION EXAMPLE

Twenty-two children are given a reading comprehension test before and
after receiving a particular instruction method.

: pre-instructional score for student .

: post-instructional score for student .

Vector of observations for each student: .

Clearly, we should expect some correlation between  and .

Yi1 i

Yi2 i

Yi = (Yi1, Yi2)T

Yi1 Yi2
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READING COMPREHENSION EXAMPLE

Questions of interest:

Do students improve in reading comprehension on average?

If so, by how much?

Can we predict post-test score from pre-test score? How correlated
are they?

If we have students with missing pre-test scores, can we predict the
scores?

We will hold off on the last question until we have learned about missing
data.
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READING COMPREHENSION EXAMPLE

Since we have bivariate continuous responses for each student, and test
scores are often normally distributed, we can use a bivariate normal
model.

Model the data as , that is,

We can answer the first two questions of interest by looking at the
posterior distribution of .

The correlation between  and  is

so we can answer the third question by looking at the posterior
distribution of , which we have once we have posterior samples of .

Yi = (Yi1, Yi2)T ∼ N2(θ, Σ)

Y = (
Yi1

Yi2
) ∼ N2 [θ = (

θ1

θ2
) , Σ = (

σ2
1 σ12

σ21 σ2
2

)] .

θ2 − θ1

Y1 Y2

ρ = ,
σ12

σ1σ2

ρ Σ
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READING EXAMPLE: PRIOR ON MEAN

Clearly, we first need to set the hyperparameters  and  in 
, based on prior belief.

For this example, both tests were actually designed apriori to have a
mean of 50, so, we can set .

 is also often a common choice when there is no prior guess,
especially when there is enough data to "drown out" the prior guess.

Next, we need to set values for elements of

It is quite reasonable to believe apriori that the true means will most
likely lie in the interval  with high probability (perhaps 0.95?),
since individual test scores should lie in the interval .

Recall that for any normal distribution, 95% of the density will lie within
two standard deviations of the mean.

μ0 Λ0

π(θ) = N2(μ0, Λ0)

μ0 = (μ0(1), μ0(2))T = (50, 50)T

μ0 = (0, 0)T

Λ0 = (
λ11 λ12

λ21 λ22
)

[25, 75]
[0, 100]
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READING EXAMPLE: PRIOR ON MEAN

Therefore, we can set

Similarly, set .

Finally, we expect some correlation between  and , but

suppose we don't know exactly how strong. We can set the prior
correlation to 0.5.

Thus,

μ0(1) ± 2√λ11 = (25, 75)   ⇒   50 ± 2√λ11 = (25, 75)

⇒   2√λ11 = 25   ⇒   λ11 = ( )
2

≈ 156.
25

2

λ22 ≈ 156

μ0(1) μ0(2)

⇒ 0.5 = =    ⇒   λ12 = 156 × 0.5 = 78.
λ12

√λ11√λ22

λ12

156

π(θ) = N2 (μ0 = (
50

50
) , Λ0 = (

156 78

78 156
)) .
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READING EXAMPLE: PRIOR ON COVARIANCE

Next we need to set the hyperparameters  and  in 
, based on prior belief.

First, let's start with a prior guess  for .

Again, since individual test scores should lie in the interval , we
should set  so that values outside  are highly unlikely.

Just as we did with , we can use that idea to set the elements of 

The identity matrix is also often a common choice for  when there is
no prior guess, especially when there is enough data to "drown out" the
prior guess.

ν0 S0
π(Σ) = IW2(ν0, S0)

Σ0 Σ

[0, 100]
Σ0 [0, 100]

Λ0 Σ0

Σ0 = (
σ

(0)
11 σ

(0)
12

σ
(0)
21 σ

(0)
22

)

Σ0
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READING EXAMPLE: PRIOR ON COVARIANCE

Therefore, we can set

Similarly, set .

Again, we expect some correlation between  and , but suppose we
don't know exactly how strong. We can set the prior correlation to 0.5.

Thus,

μ0(1) ± 2√σ
(0)
11 = (0, 100)   ⇒   50 ± 2√σ

(0)
11 = (0, 100)

⇒   2√σ
(0)
11 = 50   ⇒   σ

(0)
11 = ( )

2

≈ 625.
50

2

σ
(0)
22 ≈ 625

Y1 Y2

⇒ 0.5 = =    ⇒   σ(0)
12 = 625 × 0.5 = 312.5.

σ
(0)
12

√σ
(0)
11
√σ

(0)
22

σ
(0)
12

625

Σ0 = (
625 312.5

312.5 625
)
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READING EXAMPLE: PRIOR ON COVARIANCE

Recall that if we are not at all confident on a prior value for , but we
have a prior guess , we can set

, so that the  is finite.

so that  is only loosely centered around .

Thus, we can set

so that we have

Σ
Σ0

ν0 = p + 2 E[Σ] = S0
1

ν0 − p − 1

S0 = Σ0

Σ Σ0

ν0 = p + 2 = 2 + 2 = 4

S0 = Σ0

π(Σ) = IW2 (ν0 = 4, Σ0 = (
625 312.5

312.5 625
)) .
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READING EXAMPLE: DATA

Now, to the data (finally!)

Y <- as.matrix(dget("http://www2.stat.duke.edu/~pdh10/FCBS/Inline/Y.reading"))
dim(Y)

## [1] 22  2

head(Y)

##      pretest posttest
## [1,]      59       77
## [2,]      43       39
## [3,]      34       46
## [4,]      32       26
## [5,]      42       38
## [6,]      38       43

summary(Y)

##     pretest         posttest    
##  Min.   :28.00   Min.   :26.00  
##  1st Qu.:34.25   1st Qu.:43.75  
##  Median :44.00   Median :52.00  
##  Mean   :47.18   Mean   :53.86  
##  3rd Qu.:58.00   3rd Qu.:60.00  
##  Max.   :72.00   Max.   :86.00
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READING EXAMPLE: DATA
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READING EXAMPLE: DATA

This is just some EDA. We will write the Gibbs sampler and answer the
questions of interest in the next module.
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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