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MULTIVARIATE DATA

= So far we have only considered basic models with scalar/univariate
outcomes, Yi,...,Y,.

= |n practice however, outcomes of interest are actually often
multivariate, e.g.,

= Repeated measures of weight over time in a weight loss study
= Measures of multiple disease markers

= Tumor counts at different locations along the intestine
= Longitudinal data is just a special case of multivariate data.

= |nterest then is often on how multiple outcomes are correlated, and on
how that correlation may change across outcomes or time points.
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MULTIVARIATE NORMAL DISTRIBUTION

The most common model for multivariate outcomes is the multivariate
normal distribution.

Let Y = (Y4,...,Y,)T, where p represents the dimension of the
multivariate outcome variable for a single unit of observation.

For multiple observations, Y; = (Y;1,...,Yy) fori=1,...,n.

Y follows a multivariate normal distribution, that is, ¥ ~ N, (s, X), if

bl D) = (2n) H12F exp { - Sy "= - )}

where |X| denotes the determinant of 3.
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MULTIVARIATE NORMAL DISTRIBUTION

IfY ~ N,(p, X), then
= pis the p X 1 mean vector, that is,
p=EY]={ENY],...,E[Y,]} = (u1,-- -, )"

= Y is the p X p positive definite and symmetric covariance matrix, that
is,

= ¥ = {01}, where g}, denotes the covariance between Y} and Y.

= Y7,...,Y), may be linearly dependent depending on the structure of 3.,
which characterizes the association between them.

= Foreachj=1,...,p, Y; ~ N(uj,0/).
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BIVARIATE NORMAL DISTRIBUTION

= |n the bivariate case, we have

_ 2
Y(Yl)wl\leu('ul),ﬁl(allal 012 2
Y, M2 021 022 = 0y

and 012 = 091 = (COV[Yl,Yz].

= The correlation between Y7 and Y5 is defined as

- COV[Y&,YE] - (o)
VVarlYi]y/VarlYy] 0102

P12

= —1<p2 <1

m Correlation coefficient is free of the measurement units.



BACK TO THE MULTIVARIATE NORMAL

= There are many special properties of the multivariate normal as we will
see as we continue to work with the distribution.

= First, dependence between any Y and Y}, does not depend on the other
p — 2 variables.

= Second, while generally, independence implies zero covariance, for the
normal family, the converse is also true. That is, zero covariance also
implies independence.

= Thus, the covariance X carries a lot of information about marginal
relationships, especially marginal independence.

s lfe=(e1,...,6) ~N,(0,I,), thatis, 1, ..., €, o N(0,1), then
Y=p+Ae= Y ~Np(n,%)

holds for any matrix square root A of ¥, that is, AAT = ¥ (see
Cholesky decomposition).
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CONDITIONAL DISTRIBUTIONS
= Partition Y = (Y1,...,Y,)! as
r=(3) =% {(0) (50 5]
where

= Y7 and pg are g x 1,

= Y5 and p2 are (p — q) x 1,

= Y7 isq X g, and

n Yoo is (p— q) X (p — q), with gy > 0.

= Then,
V1Yo = yo ~ Ny (p1 + Z12355 (Y2 — p2), Bi1 — S1255, Sa1) -
= Marginal distributions are once again normal, that is,

Yi NNq (“17211); Yé NN;)—q (“27222)-




CONDITIONAL DISTRIBUTIONS

= |n the bivariate normal case with

_ 2
Y(Yl)NN2[M(H1>7E(UHUl o 2)]7
Yo L2 021 022 = 05
we have

2
(o o

YilYe =y2 ~ N | 1+ —5 (92 — p2),07 — =7 | -
T2 T2

which can also be written as

o
VilYo =y ~ N <,u1 + J—lp(y2 — p2), (1 - P2)‘7%) ‘
2



MULTIVARIATE NORMAL LIKELIHOOD
= Suppose Y; = (Yi1,...,Yp)l ~ Np(0,%),i=1,...,n.

= Write Y = (y1,...,9n)’. The resulting likelihood can then be written
as

n

p(¥10,2) = [Tom) #1217 exp { -5 01 - 072 (i~ 6)

=1

o [Z|77 exp {—% > (@i -0 (yi - 9)} :

=l

= |t will be super useful to be able to write the likelihood in two different

formulations depending on whether we care about the posterior of @ or
2.



MULTIVARIATE NORMAL LIKELIHOOD

= For inference on 6, it is convenient to write p(Y|@, X) as

=1

_n 1 _
p(Y|60,%) x 12| 2 . exp{i (yi—O)TE l(yie)}

~~

does not involve 8 same term

i=1 i=1

{0 15w

O where y = (41,...,7,)" .




MULTIVARIATE NORMAL LIKELIHOOD

= For inference on X, we need to rewrite the likelihood a bit.

= First a few results from matrix algebra:

1. tr(A) = Z;:l a;;, where a;; is the jth diagonal element of a

square p X p matrix A, where tr(-) is the trace function (sum of
diagonal elements).

2. Cyclic property:
tr(ABC) = tr(BCA) = tr(CAB),

given that the product ABC is a square matrix.
3. If Aisap X p matrix, then for a p x 1 vector x,

x’ Az = tr(z’ Ax)

holds by (1), since & Az is a scalar.
4. tr(A + B) = tr(A) + tr(B).
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MULTIVARIATE NORMAL LIKELIHOOD

= |t is convenient to rewrite p(Y|@, X) as

1 n
p(Y|0,%) oc [X] 2 exp{ 32 ¥~ 0) s (yi — 0)}
=1

- g

~
no algebra/change yet

( 3\

= [Z7% exp{ — Ztr ~0)'S(y; —0)] »
L byresu1t3 )
( )

= |E|_% eXp< ——Ztr _0)T2—1:| |
L by cychc property )
( )

—& ]. & T —1

= |2 * exp ! —5tr [;(yz —0)(yi—6) % ] \

L byr;srult4 )

_n 1 _
= |X| exp{—itr ED? 1}},

matrix.

i where Sy = >""  (y; — 0)(y; — 6)” is the residual sum of squares




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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