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BAYESIAN INFERENCE (CONJUGACY RECAP)

As we've seen so far, Bayesian inference is based on posterior
distributions, that is,

2(6ly) = 7T(é’)°.10(y|6’) L W(9)°L)(9|y),

where y = (y1,...,Yn)-
Good news: we have the numerator in this expression.

Bad news: the denominator is typically not available (may involve high
dimensional integral)!

How have we been getting by? Conjugacy! For conjugate priors, the
posterior distribution of @ is available analytically.

What if a conjugate prior does not represent our prior information well,
or we have a more complex model, and our posterior is no longer in a
convenient distributional form?
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SOME CONJUGATE MODELS

= For example, the most common conjugate models are

Prior Likelihood Posterior
beta binomial beta
gamma Poisson gamma
gamma exponential gamma
normal-gamma normal normal-gamma
beta negative-binomial beta

beta geometric beta

= There are a few more we have not covered yet, for example, the

Dirichlet-multinomial model.

= However, clearly, we cannot restrict ourselves to conjugate models only.
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BACK TO THE NORMAL MODEL

= For example, for conjugacy in the normal model, we had

(i) =N (0 =)

[0 170
(1) =G 20
() amma(2,27_0>

= Suppose we instead wish to specify our uncertainty about u as
independent of 7, that is, we want 7(u, 7) = 7(u) (7). For example,

W(/J’) = N (/1’070'3) 0

vy Uy

() = Gaunma (72, ).

2 27,

1
= When ag is not proportional to —, the marginal density of 7 is not a
T

gamma density (or a density we can easily sample from).

= Side note: for conjugacy, the joint posterior should also be a product of
two independent Normal and Gamma densities in i and 7 respectively.




NON-CONJUGATE PRIORS

= |n general, conjugate priors are not available for generalized linear
models (GLMs) other than the normal linear model.

= One can potentially rely on an asymptotic normal approximation.
= As n — o0, the posterior distribution is normal centered on MLE.

= However, even for moderate sample sizes, asymptotic approximations
may be inaccurate.

= |n logistic regression for example, for rare outcomes or rare binary
exposures, posterior can be highly skewed.

= |t is appealing to avoid any reliance on large sample assumptions and
base inferences on exact posterior.
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NON-CONJUGATE PRIORS

= Even though we may not be able to sample from the marginal posterior of
a particular parameter when using a non-conjugate prior, sometimes, we
may still be able to sample from conditional distributions of those
parameters given all other parameters and the data.

= These conditional distributions, known as full conditionals, will be very
important for us.

= |n our normal example with

H~ N (/J'O7 0(2)) o
gy
T ~ Gamma (7, 2—7_0) ,
turns out we will not be able sample easily from 7|Y,

= However, as you will see, we will be able to sample from T\u, Y. That is
the full conditional for 7.

= By the way, note that we already know the full conditional for u, i.e.,
w|7T,Y from previous modules.
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FULL CONDITIONAL DISTRIBUTIONS

= Goal: try to take advantage of those full conditional distributions
(without sampling directly from the marginal posteriors) to obtain
samples from the said marginal posteriors.

= In our example, with m(p) = N (o, 02), we have

/J/|Y7 T~ N(anTn_l)y

where

Ho —
0—3 + NTY

" fp = ; and
— +nT
99

= T, =~ +nrT.

n 0_2

0

= Review results from previous modules on the normal model if you are not
sure why this holds.

= Let's see if we can figure out the other full conditional 7|y, Y.
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FULL CONDITIONAL DISTRIBUTIONS
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FULL CONDITIONAL DISTRIBUTIONS
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| TERATIVE SCHEME

Now we have two full conditional distributions but what we really need is
to sample from 7(7|Y).

Actually, if we could sample from 7(u, 7|Y’), we already know that the

draws for p and 7 will be from the two marginal posterior distributions.
So, we just need a scheme to sample from m(u, 7|Y).

Suppose we had a single sample, say 7@ from the marginal posterior
distribution 7(7|Y"). Then we could sample

plY ~ p(plrD,Y).

This is what we did in the last class, so that the pair {u1), 71} is a
sample from the joint posterior 7w(u, 7|Y').

= ,u(l) can be considered a sample from the marginal distribution of L,
which again means we can use it to sample

7-(2) ~ p(T‘ru’(l)7 Y)a

and so forth.
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GIBBS SAMPLING

= So, we can use two full conditional distributions to generate samples
from the joint distribution, once we have a starting value @,

= Formally, this sampling scheme is known as Gibbs sampling.

= Purpose: Draw from a joint distribution, say p(u, 7|Y).

= Method: Iterative conditional sampling
=« Draw 71 ~ p(7]p(9, )
« Draw 1 ~ p(u|r™),Y)

= Purpose: Full conditional distributions have known forms, with
sampling from the full conditional distributions fairly easy.

= More generally, we can use this method to generate samples of
6 = (04,...,0,), the vector of p parameters of interest, from the joint

density.
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GIBBS SAMPLING

= Procedure:
= Start with initial value (%) = (0(0), ey 92(90)).

» Foriterationss =1,...,5,

(s)

1. Sample 91 from the conditional posterior distribution

w610, =65, ...,6, =60V Y)

(s)

2. Sample 6,

from the conditional posterior distribution

(6216, = 6,05 =67, ... 6, =60V Y)

3. Similarly, sample 9;8), ey 91(08) from the conditional posterior

distributions given current values of other parameters.
= This generates a dependent sequence of parameter values.
= |n the next module, we will look into a simple example of how this works,
before going back to the normal model.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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