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NORMAL MODEL

Suppose we have independent observations , where
each  or , with unknown parameters 
and  (or ).

Then, the likelihood is

Y = (y1, y2, … , yn)
yi ∼ N (μ, σ2) yi ∼ N (μ, τ −1) μ

σ2 τ

P(Y |μ, σ2) =
n

∏
i=1

τ  exp{− τ(yi − μ)2}

∝ τ  exp{− τ

n

∑
i=1

(yi − μ)2}

∝ τ  exp{− τ

n

∑
i=1

[(yi − ȳ) − (μ − ȳ)]2}

∝ τ  exp{− τ [
n

∑
i=1

(yi − ȳ)2 +
n

∑
i=1

(μ − ȳ)2]}

∝ τ  exp{− τ [
n

∑
i=1

(yi − ȳ)2 + n(μ − ȳ)2]}

∝ τ  exp{− τs2(n − 1)}  exp{− τn(μ − ȳ)2} .
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LIKELIHOOD FOR NORMAL MODEL

Likelihood:

where

 is the sample mean; and

 is the sample variance.

Sufficient statistics:

Sample mean ; and

Sample sum of squares .

MLEs:

.

, and .

P(Y |μ, σ2) ∝ τ  exp{− τs2(n − 1)}  exp{− τn(μ − ȳ)2} ,
n

2
1

2

1

2

ȳ = ∑n

i=1 yi

s2 = ∑n

i=1(yi − ȳ)2/(n − 1)

ȳ

SS = s2(n − 1) = ∑n

i=1(yi − ȳ)2

μ̂ = ȳ

τ̂ = n/SS σ̂2 = SS/n
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

We can break down inference problem for this two-parameter model into
two one-parameter problems.

First start by developing inference on  when  is known. Turns out we
can use a conjugate prior for . We will get to unknown  in the
next module.

For  known, the normal likelihood further simplifies to

leaving out everything else that does not depend on .

For , we consider , i.e., , where 

.

Let's derive the posterior .

μ σ2

π(μ|σ2) σ2

σ2

∝  exp{− τn(μ − ȳ)2} ,
1

2

μ

π(μ|σ2) N (μ0, σ2
0) N (μ0, τ −1

0 )
τ −1

0 = σ2
0

π(μ|Y , σ2)
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

First, the prior  can be written as

When the normal density is written in this form, note the following
details in the exponent.

First, we must have , and whatever term we see multiplying 
 must be the mean, in this case, .

Second, the precision  is outside the parenthensis.

π(μ|σ2) = N (μ0, τ −1
0 )

⇒ π(μ|σ2)  =   τ0 ⋅ exp{− τ0(μ − μ0)2)}

∝  exp{− τ0(μ2 − 2μμ0 + μ2
0)}

∝  exp{− τ0(μ2 − 2μμ0)} .
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

Now to the posterior:

Expanding out squared terms

Ignoring terms not containing 

π(μ|Y , σ2)  ∝  π(μ|σ2)P(Y |μ, σ2)  ∝  exp{− τ0(μ − μ0)2}  exp{− τn(μ − ȳ)2}
1

2

1

2

⇒ π(μ|Y , σ2)  ∝  exp{− τ0(μ2 − 2μμ0 + μ2
0)}  exp{− τn(μ2 − 2μȳ + ȳ2)}

1
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μ

⇒ π(μ|Y , σ2)  ∝  exp{− τ0(μ2 − 2μμ0)}  exp{− τn(μ2 − 2μȳ)}

=  exp{− [τ0(μ2 − 2μμ0) + τn(μ2 − 2μȳ)]}

=  exp{− [μ2(τn + τ0) − 2μ(τnȳ + τ0μ0)]} .
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE

This sort of looks like a normal kernel but we need to do a bit more work
to get there.

Particularly, we need to have it be of the form , so that we
have  as the mean and  as the precision.

We have

which now looks like the kernel of a normal distribution.

b(μ2 − 2μa)
a b

π(μ|Y , σ2)  ∝  exp{− [μ2(τn + τ0) − 2μ(τnȳ + τ0μ0)]}

=  exp{− ⋅ (τn + τ0) [μ2 − 2μ( )]} .
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τnȳ + τ0μ0

τn + τ0

7 / 12



POSTERIOR WITH PRECISION TERMS

Again, the posterior is

So, in terms of precision, we have

where

and

π(μ|Y , σ2)  ∝  exp{− ⋅ (τn + τ0) [μ2 − 2μ( )]} .
1

2

τnȳ + τ0μ0

τn + τ0

μ|Y , σ2 ∼ N (μn, τ −1
n )

μn =
τnȳ + τ0μ0

τn + τ0

τn = τn + τ0.
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POSTERIOR WITH PRECISION TERMS

As mentioned before, Bayesians often prefer to talk about precision
instead of variance.

We have

 as the sampling precision (how close the 's are to ).

 as the prior precision (our prior belief about the uncertainty about
 around our prior guess ).

 as the posterior precision

From the posterior, we can see that, the posterior precision equals the
prior precision plus the data precision.

That is, once again, the posterior information is a combination of the
prior information and the information from the data.

τ yi μ

τ0
μ μ0

τn
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POSTERIOR WITH PRECISION TERMS: COMBINING

INFORMATION

Posterior mean is weighted sum of prior information plus data
information:

Recall that  (and thus ) is known for now.

If we think of the prior mean as being based on  prior observations

from a similar population as , then we might set ,

which implies , and then the posterior mean is given by

μn =

= μ0 + ȳ

nτȳ + τ0μ0

τn + τ0
τ0

τ0 + τn

nτ

τ0 + τn

σ2 τ

κ0

y1, y2, … , yn σ2
0 = σ2

κ0

τ0 = κ0τ

μn = μ0 + ȳ .
κ0

κ0 + n

n

κ0 + n
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POSTERIOR WITH VARIANCE TERMS

In terms of variances, we have

where

and

It is still easy to see that we can re-express the posterior information as a
sum of the prior information and the information from the data.

μ|Y , σ2 ∼ N (μn, σ2
n)

μn =

ȳ + μ0
n
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!

12 / 12


