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NORMAL MODEL

= Suppose we have independent observations Y = (y1,¥2, ..., Yn), Where
each y; ~ N (u, %) or y; ~ N (u, 7~ 1), with unknown parameters
and o2 (or 7).

= Then, the likelihood is

L 1 1 1
P(Y|u,0?) = H T2 exp {—ET(yi — u)2}
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LIKELIHOOD FOR NORMAL MODEL

= Likelihood:
9 iC 1 2 1 —\2
P(Y|p,0°) ox 77 exp —5T8 (n—1) ¢ exp —§Tn(u —g) ¢,

where

= E?:l Yy; is the sample mean; and

.

2 =>" (yi —9)*/(n — 1) is the sample variance.
= Sufficient statistics:

= Sample mean y; and

= Sample sum of squares SS = s*(n — 1) = >_1"  (yi — §)>.
= MLEs:

m /_}, — 'g

» 7 =n/88, and 6* = SS/n.




INFERENCE FOR MEAN, CONDITIONAL ON
VARIANCE

= We can break down inference problem for this two-parameter model into
two one-parameter problems.

= First start by developing inference on p when a? is known. Turns out we
can use a conjugate prior for 7(|o?). We will get to unknown o2 in the
next module.

= For o known, the normal likelihood further simplifies to

1 _
~ eXP{—ng(H—y)Z},

leaving out everything else that does not depend on w.

« For 7(u|o?), we consider N (po, 02), i.e., N'(po, 7, ), where

-1 L 2
’TO = 0'0.

= Let's derive the posterior (u|Y, o?).
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INFERENCE FOR MEAN, CONDITIONAL ON
VARIANCE

= First, the prior m(u|o?) = N (o, 7, ') can be written as

= ulot) =~ -exp {3l o))}

1
X exp {—570(;3 — 2pp0 + uﬁ)}

1
X exp {—57‘0(#2 - 2##0)} :

= When the normal density is written in this form, note the following
details in the exponent.

= First, we must have ,u,2 — 2u, and whatever term we see multiplying
24 must be the mean, in this case, ug.

= Second, the precision 7y is outside the parenthensis.




INFERENCE FOR MEAN, CONDITIONAL ON
VARIANCE

= Now to the posterior:
2 2 2 1 2 1 =\
¥ 0) o wulo?P(¥ i) ox exp{ — gl — po)? b exp { Gl —5)"}
= Expanding out squared terms
1 1
= n(u|Y,0?) o« exp {—Efo(;f — 2pp0 + u%)} exp {—gm(u? —2uy + 52)}
= |gnoring terms not containing u

1 1 _
= m(p|Y,0”) o exp {—570(u2 = 2uuo)} exp {—gm(u2 = 2uy)}

= exp {—% [70(1* = 2pp0) + Tn(1* — 2p)] }

= exp {—% [N2(Tn +70) — 2u(Tng + Topo)] } .



INFERENCE FOR MEAN, CONDITIONAL ON
VARIANCE

m This sort of looks like a normal kernel but we need to do a bit more work
to get there.

= Particularly, we need to have it be of the form b(u? — 2ua), so that we
have a as the mean and b as the precision.

= We have

m(pY,0?) o« exp {—% (12 (Tn + 70) — 2u(TRY + Tomo) ] }

1 2 ™Y + Tolo
- o _gy (TR0 L
exp{ 5 (Tn + 79) l,u L ( pn— )} }

which now looks like the kernel of a normal distribution.



POSTERIOR WITH PRECISION TERMS

= Again, the posterior is

1 TNY + Tolo
m(u|Y,0?) eXp{—E-(TTL—l—Tg) [,uz—Z,u( p———— )]}

= S0, in terms of precision, we have
2 —1
p|Y, 0% ~ N (b, T )
where

T’I’Lg + ToMo
™ + To

Hn =

and

Tn = TN + Ty.




POSTERIOR WITH PRECISION TERMS

= As mentioned before, Bayesians often prefer to talk about precision
instead of variance.

= We have

= 7 as the sampling precision (how close the y;'s are to ).

= 79 as the prior precision (our prior belief about the uncertainty about
@ around our prior guess ().

= T, as the posterior precision

= From the posterior, we can see that, the posterior precision equals the
prior precision plus the data precision.

= That is, once again, the posterior information is a combination of the
prior information and the information from the data.

9712




POSTERIOR WITH PRECISION TERMS: COMBINING
INFORMATION

= Posterior mean is weighted sum of prior information plus data
information:
nTY -+ Tolo

™ + 70
70 nr

— U +
To—i—Tn'uO T0 + TN

MHn =

= Recall that o2 (and thus 7) is known for now.

= |f we think of the prior mean as being based on K prior observations
. . . . 2
from a similar population as yi,y2, - . ., Yn, then we might set oy = Z—O

which implies 79 = Ko7, and then the posterior mean is given by
ko ¢ no _
Ko +n Ho Ko +n J:

Hn =




POSTERIOR WITH VARIANCE TERMS

= |n terms of variances, we have
2 2
plY,o ~ N(Nmo'n)
where
n 1

___|__ 0
2Vt ook

and

Oon —

n_|_ 1
g T g9
o 7,

m |t is still easy to see that we can re-express the posterior information as a
O sum of the prior information and the information from the data.




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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