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Some MCMC TERMINOLOGY

= Convergence: bypassing initial drift in the samples towards a stationary
distribution.

= Burn-in: samples at start of the chain that are discarded to allow
convergence.

= Trace plot: plot of sampled values of a parameter vs iterations.
= Slow mixing: tendency for high autocorrelation in the samples.

» Thinning: practice of collecting every kth iteration to reduce
autocorrelation.

It gets you a little closer to iid draws and saves memory (you don't store
all draws), but unless memory is a major issue or autocorrelation is very
high, thinning is usually not needed.
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BURN-IN

= Because convergence often occurs regardless of our starting point (in not-
too-complex problems at least), we can usually pick any reasonable
values in the parameter space as a starting point.

= The time it takes for the chain to converge may vary depending on how
close the starting values are to a high probability region of the posterior.

= Generally, we throw out a certain number of the first draws, known as
the burn-in, as an attempt to make our draws closer to the stationary
distribution and less dependent on any single set of starting values.

= However, we don't know exactly when convergence occurs, so it is not
always clear how much burn-in we would need.
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TRACE PLOT WITH BAD MIXING

= Trace plot: plot of sampled values of a parameter vs iterations.
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POOR MIXING

= Exhibits "snaking” behavior in trace plot with cyclic local trends in the
mean.

= Poor mixing in the Gibbs sampler caused by high posterior correlation in
the parameters.

= Decreases efficiency & many more samples need to be collected to
maintain low Monte Carlo error in posterior summaries.

= For very poor mixing chain, may even need millions of iterations.

= Routinely examine trace plots!
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TRACE PLOT WITH GOOD MIXING
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CONVERGENCE DIAGNOSTICS

= Diagnostics available to help decide on number of burn-in & collected
samples.

= Note: no definitive tests of convergence but you should do as many
diagnostics as you can, on all parameters in your model.

= With "experience”, visual inspection of trace plots perhaps most useful
approach.

» There are a number of useful automated tests in R.
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DIAGNOSTICS IN R

= The most popular package for MCMC diagnostics in R is coda.

m coda USeS a special MCMC format so you must always convert your
posterior matrix into an MCMC object.

= Continuing with the posterior samples for the Pygmalion study, we have
the following in R.

#library(coda)
phi.mcmc <- mcmc(PHI,start=1) #no burn-in (simple problem!)
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DIAGNOSTICS IN R

summary (phi.mcmc)

H#

## Iterations = 1:10000

## Thinning interval = 1

## Number of chains =1

## Sample size per chain = 10000

##

## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:

H#

# Mean SD Naive SE Time-series SE

## mu 13.98961 2.94748 0.0294748 0.0341435

## tau 0.02839 0.01646 0.0001646 0.0001855

## sigma2 53.34388 53.27616 0.5327616 0.6502608

##

## 2. Quantiles for each variable:

##

H# 2.5% 25% 50% 75% 97.5%
## mu 7.519819 12.36326 14.21682 15.84203 19.27701
## tau 0.005744 0.01626 0.02526 0.03726 0.06886

## sigma2 14.522591 26.83933 39.59569 61.49382 174.10833

The naive SE is the standard error of the mean, which captures simulation
error of the mean rather than the posterior uncertainty.

The time-series SE adjusts the naive SE for autocorrelation.
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EFFECTIVE SAMPLE SIZE

= The effective sample size translates the number of MCMC samples .S into
an equivalent number of independent samples.

= |t is defined as

S

ESS = ————,
1*_2§:kpk

where S is the sample size and py, is the lag k autocorrelation.

= For our data, we have

effectiveSize(phi.mcmc)

#H# mu tau sigma2
## T7452.197 7877.721 6712.600

= So our 10,000 samples are equivalent to 7452 independent samples for p,

7878 independent samples for 7, and 6713 independent samples for o,
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TRACE PLOT FOR MEAN

plot(phi.mcmc[,"mu"])
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: Looks great!



TRACE PLOT FOR PRECISION

plot(phi.mcmc[,"tau"])

Trace of var1 Density of var1
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: Looks great!



TRACE PLOT FOR VARIANCE

plot(phi.mcmc[,"sigma2"])
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We do see a few wacky samples that we did not see with 7, due to the scale.

O Generally, still looks great!



AUTOCORRELATION

= Another way to evaluate convergence is to look at the autocorrelation
between draws of our Markov chain.

= The lag k autocorrelation, py, is the correlation between each draw and
its kth lag, defined as

550, — 6)(6,:1 — )
DR () R

Pr =

= We expect the autocorrelation to decrease as k increases.

= |f autocorrelation remains high as k increases, we have slow mixing due
to the inability of the sampler to move around the space well.




AUTOCORRELATION FOR MEAN

autocorr.plot(phi.mecmc[,"mu"])
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: This looks great! Look how quickly autocorrelation goes to 0.




AUTOCORRELATION FOR PRECISION

autocorr.plot(phi.mecmc[,"tau"])

Autocorrelation
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: Also great!




AUTOCORRELATION FOR VARIANCE

autocorr.plot(phi.mcmc[,"sigma2"])
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GELMAN AND RUBIN STATISTIC

= Andrew Gelman and Don Rubin suggested a diagnostic statistic based on
taking separate sets of Gibbs samples (multiple chains) with dispersed
initial values to test convergence.

= The algorithm proceeds as follows.

= Run m > 2 chains of length 2S5 from overdispersed starting values.

Discard the first S draws in each chain.

Calculate the within-chain and between-chain variance.

Calculate the estimated variance of the parameter as a weighted
sum of the within-chain and between-chain variance.

Calculate the potential scale reduction factor

Var(6)
W b

R=

where Var(6) is the weighted sum of the within-chain and between-

chain variance and W is the mean of the variances of each chain
(average within-chain variance).
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GEWEKE STATISTIC

= Geweke proposed taking two non-overlapping parts of a single Markov
chain (usually the first 10% and the last 50%) and comparing the mean of
both parts, using a difference of means test.

= The null hypothesis would be that the two parts of the chain are from the

same distribution.

= The test statistic is a z-score with standard errors adjusted for
autocorrelation, and if the p-value is significant for a variable, you need
more draws.

= The output is the z-score itself (not the p-value).

geweke.diag(phi.mcmc)

#4#
#4#
##
#4#
##
#

Fraction in 1st window
Fraction in 2nd window

mu
0.9521

tau
2.0088

sigma2
-1.9533

I
[O O]
ua =
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PRACTICAL ADVICE ON DIAGNOSTICS

= There are more tests we can use: Raftery and Lewis diagnostic,
Heidelberger and Welch, etc.

= The Gelman-Rubin approach is quite appealing in using multiple chains

= Geweke (and Heidelberger and Welch) sometimes reject even when the
trace plots look good.

= QOverly sensitive to minor departures from stationarity that do not impact
inferences.

= Sometimes this can be solved with more iterations. Otherwise, you may
want to try multiple chains.

= Most common method of assessing convergence is visual examination of
trace plots.

= CAUTION: diagnostics cannot guarantee that a chain has converged, but
they can indicate it has not converged.
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HPD INTERVAL FOR PYGMALION DATA

hdr.den(PHI[,1],prob=95,main="95% HPD region'", xlab=expression(mu),
ylab=expression(paste(pi," (", mu, "|y)")))
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HPD INTERVAL FOR PYGMALION DATA

hdr.den(PHI[,2],prob=95,main="95% HPD region", xlab=expression(tau),
ylab=expression(paste(pi," (", tau, "|y)")))
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HPD INTERVAL FOR PYGMALION DATA

hdr (PHI[,1],prob=95)S$hdr

#i [,1] [,2]
## 95% 8.080022 19.87699

hdr (PHI[,2],prob=95)s$hdr

## [,1] [,2]
## 95% -0.0006954123 0.06023567

We can compare the HPD intervals to the equal tailed credible intervals.
quantile(PHI[,1],c(0.025,0.975))

#4# 2.5% 97.5%
## 7.519819 19.277013

quantile(PHI[,2],c(0.025,0.975))

#4# 2.5% 97.5%
## 0.005743552 0.068858238

Intervals are closer for u (symmetric density) compared to 7 (not symmetric).
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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