STA 360/602L: MobuLe 3.10
MCMC anD GiBBS SAMPLING |V

DRrR. OLANREWAJU MICHAEL AKANDE

1724

Some MCMC TERMINOLOGY

= Convergence: bypassing initial drift in the samples towards a stationary
distribution.

= Burn-in: samples at start of the chain that are discarded to allow
convergence.

= Trace plot: plot of sampled values of a parameter vs iterations.
= Slow mixing: tendency for high autocorrelation in the samples.

» Thinning: practice of collecting every kth iteration to reduce
autocorrelation.

It gets you a little closer to iid draws and saves memory (you don't store
all draws), but unless memory is a major issue or autocorrelation is very
high, thinning is usually not needed.

2/ 24

BURN-IN

= Because convergence often occurs regardless of our starting point (in not-
too-complex problems at least), we can usually pick any reasonable
values in the parameter space as a starting point.

= The time it takes for the chain to converge may vary depending on how
close the starting values are to a high probability region of the posterior.

= Generally, we throw out a certain number of the first draws, known as
the burn-in, as an attempt to make our draws closer to the stationary
distribution and less dependent on any single set of starting values.

= However, we don't know exactly when convergence occurs, so it is not
always clear how much burn-in we would need.

3/24

TRACE PLOT WITH BAD MIXING

= Trace plot: plot of sampled values of a parameter vs iterations.

Al ll . il 1 l'l'hni_l. I;il.illlln
S R A

4/ 24

POOR MIXING

= Exhibits "snaking” behavior in trace plot with cyclic local trends in the
mean.

= Poor mixing in the Gibbs sampler caused by high posterior correlation in
the parameters.

= Decreases efficiency & many more samples need to be collected to
maintain low Monte Carlo error in posterior summaries.

= For very poor mixing chain, may even need millions of iterations.

= Routinely examine trace plots!

5/ 24

TRACE PLOT WITH GOOD MIXING

6 /24

CONVERGENCE DIAGNOSTICS

= Diagnostics available to help decide on number of burn-in & collected
samples.

= Note: no definitive tests of convergence but you should do as many
diagnostics as you can, on all parameters in your model.

= With "experience”, visual inspection of trace plots perhaps most useful
approach.

» There are a number of useful automated tests in R.

71/ 24

DIAGNOSTICS IN R

= The most popular package for MCMC diagnostics in R is coda.

m coda USeS a special MCMC format so you must always convert your
posterior matrix into an MCMC object.

= Continuing with the posterior samples for the Pygmalion study, we have
the following in R.

#library(coda)
phi.mcmc <- mcmc(PHI,start=1) #no burn-in (simple problem!)

8/ 24

DIAGNOSTICS IN R

summary (phi.mcmc)

H#

Iterations = 1:10000

Thinning interval = 1

Number of chains =1

Sample size per chain = 10000

##

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

H#

Mean SD Naive SE Time-series SE

mu 13.98961 2.94748 0.0294748 0.0341435

tau 0.02839 0.01646 0.0001646 0.0001855

sigma2 53.34388 53.27616 0.5327616 0.6502608

##

2. Quantiles for each variable:

##

H# 2.5% 25% 50% 75% 97.5%
mu 7.519819 12.36326 14.21682 15.84203 19.27701
tau 0.005744 0.01626 0.02526 0.03726 0.06886

sigma2 14.522591 26.83933 39.59569 61.49382 174.10833

The naive SE is the standard error of the mean, which captures simulation
error of the mean rather than the posterior uncertainty.

The time-series SE adjusts the naive SE for autocorrelation.

9724

EFFECTIVE SAMPLE SIZE

= The effective sample size translates the number of MCMC samples .S into
an equivalent number of independent samples.

= |t is defined as

S

ESS = ————,
1*_2§:kpk

where S is the sample size and py, is the lag k autocorrelation.

= For our data, we have

effectiveSize(phi.mcmc)

#H# mu tau sigma2
T7452.197 7877.721 6712.600

= So our 10,000 samples are equivalent to 7452 independent samples for p,

7878 independent samples for 7, and 6713 independent samples for o,

10 / 24

TRACE PLOT FOR MEAN

plot(phi.mcmc[,"mu"])

Trace of var1 Density of var1
Q _ 2
(ap) -
o
& - e _
S
o _|
~ (o]
[an
o
O p—
o
o L
| | | | | | S | | | |
0 2000 6000 10000 0 10 20 30
lterations N = 10000 Bandwidth = 0.4361

: Looks great!

TRACE PLOT FOR PRECISION

plot(phi.mcmc[,"tau"])

Trace of var1 Density of var1

o
o &

_ o
(co) N
o
o 0 _|
< | o _|
(]] h
o

p— LO pu—
(]
QO o
S | | | | | T T T T T T 1

0 2000 6000 10000 0.00 0.04 0.08 0.12
lterations N =10000 Bandwidth = 0.002632

: Looks great!

TRACE PLOT FOR VARIANCE

plot(phi.mcmc[,"sigma2"])

Trace of var1 Density of var1
o
g S
© o
- _
o _|
o o
- 5. 1
o o
o —
O —
o
o — S | L .
| | | | | | S | | |
0 2000 6000 10000 0 500 1000 1500
lterations N = 10000 Bandwidth =4.345

We do see a few wacky samples that we did not see with 7, due to the scale.

O Generally, still looks great!

AUTOCORRELATION

= Another way to evaluate convergence is to look at the autocorrelation
between draws of our Markov chain.

= The lag k autocorrelation, py, is the correlation between each draw and
its kth lag, defined as

550, — 6)(6,:1 —)
DR () R

Pr =

= We expect the autocorrelation to decrease as k increases.

= |f autocorrelation remains high as k increases, we have slow mixing due
to the inability of the sampler to move around the space well.

AUTOCORRELATION FOR MEAN

autocorr.plot(phi.mecmc[,"mu"])

S]
c 0 _|
je) o
©
9,;’ Qo Lo e e e e
o ©O
(&]
S
> v
< o 7]
e
T | I | I |
0 10 20 30 40
Lag

: This looks great! Look how quickly autocorrelation goes to 0.

AUTOCORRELATION FOR PRECISION

autocorr.plot(phi.mecmc[,"tau"])

Autocorrelation
10 -05 00 05 1.0

: Also great!

AUTOCORRELATION FOR VARIANCE

autocorr.plot(phi.mcmc[,"sigma2"])

o
c 0 _|
je) o
©
2 o ,
EoS 4 e
O
ie]
> v
< o 7]
<
T T I T I T
0 10 20 30 40
Lag

: Also great!

GELMAN AND RUBIN STATISTIC

= Andrew Gelman and Don Rubin suggested a diagnostic statistic based on
taking separate sets of Gibbs samples (multiple chains) with dispersed
initial values to test convergence.

= The algorithm proceeds as follows.

= Run m > 2 chains of length 2S5 from overdispersed starting values.

Discard the first S draws in each chain.

Calculate the within-chain and between-chain variance.

Calculate the estimated variance of the parameter as a weighted
sum of the within-chain and between-chain variance.

Calculate the potential scale reduction factor

Var(6)
W b

R=

where Var(6) is the weighted sum of the within-chain and between-

chain variance and W is the mean of the variances of each chain
(average within-chain variance).

18 / 24

GEWEKE STATISTIC

= Geweke proposed taking two non-overlapping parts of a single Markov
chain (usually the first 10% and the last 50%) and comparing the mean of
both parts, using a difference of means test.

= The null hypothesis would be that the two parts of the chain are from the

same distribution.

= The test statistic is a z-score with standard errors adjusted for
autocorrelation, and if the p-value is significant for a variable, you need
more draws.

= The output is the z-score itself (not the p-value).

geweke.diag(phi.mcmc)

#4#
#4#
##
#4#
##
#

Fraction in 1st window
Fraction in 2nd window

mu
0.9521

tau
2.0088

sigma2
-1.9533

I
[O O]
ua =

19/ 24

PRACTICAL ADVICE ON DIAGNOSTICS

= There are more tests we can use: Raftery and Lewis diagnostic,
Heidelberger and Welch, etc.

= The Gelman-Rubin approach is quite appealing in using multiple chains

= Geweke (and Heidelberger and Welch) sometimes reject even when the
trace plots look good.

= QOverly sensitive to minor departures from stationarity that do not impact
inferences.

= Sometimes this can be solved with more iterations. Otherwise, you may
want to try multiple chains.

= Most common method of assessing convergence is visual examination of
trace plots.

= CAUTION: diagnostics cannot guarantee that a chain has converged, but
they can indicate it has not converged.

20/ 24

HPD INTERVAL FOR PYGMALION DATA

hdr.den(PHI[,1],prob=95,main="95% HPD region'", xlab=expression(mu),
ylab=expression(paste(pi," (", mu, "|y)")))

95% HPD region

N
~
o
©
o

— .

> o

=

B
v
Q
o
o
S
o

-10 0 10 20 30

HPD INTERVAL FOR PYGMALION DATA

hdr.den(PHI[,2],prob=95,main="95% HPD region", xlab=expression(tau),
ylab=expression(paste(pi," (", tau, "|y)")))

95% HPD region

20

m(tly)
10

0.15

HPD INTERVAL FOR PYGMALION DATA

hdr (PHI[,1],prob=95)S$hdr

#i [,1] [,2]
95% 8.080022 19.87699

hdr (PHI[,2],prob=95)s$hdr

[,1] [,2]
95% -0.0006954123 0.06023567

We can compare the HPD intervals to the equal tailed credible intervals.
quantile(PHI[,1],c(0.025,0.975))

#4# 2.5% 97.5%
7.519819 19.277013

quantile(PHI[,2],c(0.025,0.975))

#4# 2.5% 97.5%
0.005743552 0.068858238

Intervals are closer for u (symmetric density) compared to 7 (not symmetric).

23/ 24

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

24 | 24

