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MONTE CARLO APPROXIMATION

Monte Carlo integration is very key for Bayesian computation and using
simulations in general.

While we will focus on using Monte Carlo integration for Bayesian
inference, the development is general and applies to any pdf/pmf .

For our purposes, we will want to evaluate expectations of the form

for many different functions  (usually scalar for us).

p(θ)

H = ∫ h(θ) ⋅ p(θ)dθ,

h(. )
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MONTE CARLO APPROXIMATION

Procedure:

1. Generate a random sample .

2. Estimate  using

In this course,  would often be the posterior distribution .

θ1, … , θm
ind∼ p(θ)

H

h̄ =
m

∑
i=1

h(θi).
1
m

p(θ) π(θ|y)
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MONTE CARLO APPROXIMATION

We have .

Assuming , so that the variance of each  is finite,
we have

1. LLN: .

2. CLT:  is is asymptotically normal, with asymptotic variance

which can be approximated by

 is often called the Monte Carlo standard error.

E[h(θi)] = H

E[h2(θi)] < ∞ h(θi)

h̄
a.s.
→ H

h̄ − H

∫ (h(θ) − H)2p(θ)dθ,
1
m

vm =
m

∑
i=1

(h(θi) − h̄)2.
1

m2

√vm
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MONTE CARLO APPROXIMATION

That is, generally, taking large Monte Carlo sample sizes  (in the
thousands or tens of thousands) can yield very precise, and cheaply
computed, numerical approximations to mathematically difficult
integrals.

What this means for us: we can approximate just about any aspect of the
posterior distribution with a large enough Monte Carlo sample.

m
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MONTE CARLO APPROXIMATION

For samples  drawn iid from , as , we have

  quantile-based credible interval.

θ1, … , θm π(θ|y) m → ∞

θ̄ =
m

∑
i=1

θi → E[θ|y]
1
m

σ̂θ =
m

∑
i=1

(θi − θ̄)2 → V[θ|y]
1

m − 1

m

∑
i=1

1[θi ≤ c] = → Pr[θ ≤ c|y]
1
m

#θi ≤ c

m

[ th percentile of (θ1, … , θm), (1 − )th percentile of (θ1, … , θm)]
α

2
α

2
→ 100 × (1 − α)
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BACK TO BIRTH RATES

Suppose we randomly sample two "new" women, one with degree and one
without.

To what extent do we expect the one without the degree to have more
kids than the other, e.g. ?

Using R,

set.seed(01222020)
a <- 2; b <- 1; #prior
n1 <- 111; sumy1 <- 217; n2 <- 44; sumy2 <- 66 #data
y1_pred <- rnbinom(100000,size=(a+sumy1),mu=(a+sumy1)/(b+n1))
y2_pred <- rnbinom(10000,size=(a+sumy2),mu=(a+sumy2)/(b+n2))
mean(y1_pred > y2_pred)

## [1] 0.48218

mean(y1_pred == y2_pred)

## [1] 0.21842

~y1 > ~y2|y11, … , y1n1 , y21, … , y2n2
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BACK TO BIRTH RATES

That is,  and 
.

Notice that strong evidence of difference between two populations does
not really imply the difference in predictions is large.

Pr(~y1 > ~y2|y11, … , y1n1 , y21, … , y2n2) ≈ 0.48
Pr(~y1 = ~y2|y11, … , y1n1 , y21, … , y2n2) ≈ 0.22
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MONTE CARLO APPROXIMATION

This general idea of using samples to "approximate" averages
(expectations) is also useful when trying to approximate posterior
predictive distributions.

Quite often, we are able to sample from  and  but not
from  directly.

We can do so indirectly using the following Monte Carlo procedure:

The sequence  constitutes 
independent samples from the joint posterior of .

In fact,  are independent draws from the posterior
predictive distribution we care about.

p(yi|θ) π(θ|{yi})
p(yn+1|y1:n)

sample θ(1) ∼ π(θ|{yi}),   then sample y(1)
n+1 ∼ f(yn+1|θ(1))

sample θ(2) ∼ π(θ|{yi}),   then sample y(2)
n+1 ∼ f(yn+1|θ(2))

  ⋮ ⋮

sample θ(m) ∼ π(θ|{yi}),   then sample y(m)
n+1 ∼ f(yn+1|θ(m)).

{(θ, yn+1)(1), … , (θ, yn+1)(m)} m

(θ,Yn+1)

{y(1)
n+1, … , y(m)

n+1}
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BACK TO BIRTH RATES

Let's re-compute  and 
 using this method.

Using R,

set.seed(01222020)
a <- 2; b <- 1; #prior
n1 <- 111; sumy1 <- 217; n2 <- 44; sumy2 <- 66 #data
theta1_pred <- rgamma(10000,219,112); theta2_pred <- rgamma(10000,68,45)
y1_pred <- rpois(10000,theta1_pred); y2_pred <- rpois(10000,theta2_pred)
mean(y1_pred > y2_pred)

## [1] 0.4765

mean(y1_pred == y2_pred)

## [1] 0.2167

Again,  and 
.

Pr(~y1 > ~y2|y11, … , y1n1 , y21, … , y2n2)
Pr(~y1 = ~y2|y11, … , y1n1 , y21, … , y2n2)

Pr(~y1 > ~y2|y11, … , y1n1 , y21, … , y2n2) ≈ 0.48
Pr(~y1 = ~y2|y11, … , y1n1 , y21, … , y2n2) ≈ 0.22
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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