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MONTE CARLO APPROXIMATION

= Monte Carlo integration is very key for Bayesian computation and using
simulations in general.

= While we will focus on using Monte Carlo integration for Bayesian
inference, the development is general and applies to any pdf/pmf p(H).

= For our purposes, we will want to evaluate expectations of the form

H=/Mmm@w,

for many different functions h(. ) (usually scalar for us).



MONTE CARLO APPROXIMATION

= Procedure:

1. Generate a random sample 64, ...,6,, nd p(0).
2. Estimate H using
1!
i=1

= In this course, p(#) would often be the posterior distribution 7(0|y).




MONTE CARLO APPROXIMATION
= We have E|h(0;)] = H.

= Assuming [E[h?(0;)] < oo, so that the variance of each h(0;) is finite,
we have

— a.s.
1. LLN: h — H.

2. CLT: h — H is is asymptotically normal, with asymptotic variance

— [(b6) - y*pi6)as,

which can be approximated by
1 m
= 7 2
1=

= /Uy, is Often called the Monte Carlo standard error.




MONTE CARLO APPROXIMATION

= That is, generally, taking large Monte Carlo sample sizes m (in the
thousands or tens of thousands) can yield very precise, and cheaply

computed, numerical approximations to mathematically difficult
integrals.

= What this means for us: we can approximate just about any aspect of the
posterior distribution with a large enough Monte Carlo sample.
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MONTE CARLO APPROXIMATION

= For samples 01, ..., 0, drawn iid from 7(6|y), as m — oo, we have

_ 1 m
0 =—> 6~ E[fly

m ;4
Sy = —— S50 — 8)2 > V[Bly]
Uﬁ—m_li:1z Yy
1 m 9, <
.E;l[&gc]:#m_c%Pr[Ogc\y]

2 2
— 100 x (1 — ) quantile-based credible interval.

[gth percentile of (01,...,0n), (1 — g)th percentile of (61, . ..

, Om )]
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BACK TO BIRTH RATES

= Suppose we randomly sample two "new"” women, one with degree and one
without.

= To what extent do we expect the one without the degree to have more
kids than the other, e.8. 41 > Us|Y11, - - - Ylng, Y21y« - » Y2n,?

= Using R,

set.seed(01222020)

a <- 2; b <= 1; #prior

nl <- 1113 sumyl <- 217; n2 <- 44; sumy2 <- 66 #data

yl_pred <- rnbinom(100000,size=(a+sumyl),mu=(a+sumyl)/(b+nl))
y2_pred <- rnbinom(10000,size=(a+sumy2) ,mu=(a+sumy2)/(b+n2))
mean(yl_pred > y2_pred)

## [1] 0.48218
mean(yl_pred == y2_pred)

## [1] 0.21842
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BACK TO BIRTH RATES

» Thatis, Pr(y; > 9s|y11,- -+, Ying, Y21, - - -, Y2n,) ~ 0.48 and
Pr(gl — gQ‘yl].) ) 7y1n17 Y21y .- 7y2n2) ~ 0.22.

= Notice that strong evidence of difference between two populations does
not really imply the difference in predictions is large.




MONTE CARLO APPROXIMATION

= This general idea of using samples to "approximate” averages
(expectations) is also useful when trying to approximate posterior
predictive distributions.

= Quite often, we are able to sample from p(y;|0) and 7(0|{y;}) but not
from p(Yn+1|y1:n) directly.

= We can do so indirectly using the following Monte Carlo procedure:

W~ f(ynia|6D)

sample 0%) ~ m(6|{y;}), then sampley) ~ f(y.10?)

sample 0V ~ 7(6{y;}), then sample y

sample 0 ~ m(6|{y;}), then sample y") ~ f(y11/0™).

= The sequence {(8, yn:1)W), ..., (0, yn+1)™} constitutes m
independent samples from the joint posterior of (0, Yn+1).

= In fact, {ynH, . ,yT(LT)l} are independent draws from the posterior

predictive distribution we care about.
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BACK TO BIRTH RATES

= Let's re-compute Pr(y; > ¥s|y11, .- -, Yin,, Y215 - - -, Y2n,) and
Pr(§, = ¥s|y11,- - -, Ying, Y21, - - - , Y2n, ) Using this method.

= Using R,

set.seed(01222020)

a <- 2; b <= 15 #prior

nl <- 1113 sumyl <- 217; n2 <- 44; sumy2 <- 66 #data

thetal_pred <- rgamma(10000,219,112); theta2_pred <- rgamma(10000,68,45)
yl_pred <- rpois(10000,thetal_pred); y2_pred <- rpois(1l0000,theta2_pred)
mean(yl_pred > y2_pred)

## [1] 0.4765
mean(yl_pred == y2_pred)
## [1] 0.2167

= Again, Pr(g; > 95|y11,- - - s Y1ny Y215 - - - » Yom,) =~ 0.48 and
Pr(§, = §yly11s- - - » Y1nis Y21, - - - » Yom,) =~ 0.22.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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