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POSTERIOR PREDICTIVE DISTRIBUTION

= What is the posterior predictive distribution for the Gamma-Poisson
model?

» leta, =a+ ) y;and b, = b+ n.

= We have

p(yn+1|y1:n) — /p(yn—klw)ﬂ-(e‘yl:n) do

_ / Po(yn1]0)Ga(6lay, b,) do

_ F(an + yn-l—l) bn o 1 o
- T(a )T (Y1 +1) \ b, +1 b, +1
which is the negative binomial distribution,
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NEGATIVE BINOMIAL DISTRIBUTION

= QOriginally derived as the number of successes in a sequence of
independent Bernoulli(p) trials before r failures occur.

= The negative binomial distribution Neg-binomial (7, p) is parameterized
by r and p and the pmf is given by

(1-p)p% y=0,1,2,...; pel0,1].

ey =ylrpl = (771

= Starting with this, the distribution can be extended to allow r € (0, 00)
as

L(y+r)
T'(y+ 1)T(r)

Pr[Y = y|r,p] = (1-p)pY; y=0,1,2,...; pe[0,1].

= Some properties:
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POSTERIOR PREDICTIVE DISTRIBUTION

= The negative binomial distribution is an over-dispersed generalization of
the Poisson.

= What does over-dispersion mean?

= In marginalizing @ out of the Poisson likelihood, over a gamma
distribution, we obtain a negative-binomial.

1
= For (Yn+1|y1.n) ~ Neg-binomial | a,,, —— ], we have
b, + 1

» Elynti|yin] = Z—n = [E|0|y1:n] = posterior mean, and
Vi) = 20 = Elga] (22,

so that variance is larger than the mean by an amount determined by b,,,
which takes the over-dispersion into account.
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PREDICTIVE UNCERTAINTY

Note that as the sample size n increases, the posterior density for
becomes more and more concentrated.

an a _'_ Zz yl g
V[0|y1:n] — a = (b—l—n)2 ~ E — 0.

b, +1
Also, recall that V|y,1|y1.n] = E[0|y1.4] ( b+ )

As we have less uncertainty about 6, the inflation factor

b, +1 b+n+1
b,  b+n

and the predictive density f(Y,+1|y1.n) — Po(¥y)-

Of course, in smaller samples, it is important to inflate our predictive
intervals to account for uncertainty in 6.




BACK TO BIRTH RATES

= Let's compare the posterior predictive distributions for the two groups of

women.
Posterior predictive distributions
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POISSON MODEL IN TERMS OF RATE

= |In many applications, it is often convenient to parameterize the Poisson
model a bit differently. One option takes the form

y; ~ Po(z;0); i=1,...,n.

where x; represents an explanatory variable and 6 is once again the
population parameter of interest. The model is not exchangeable in the
yi's but is exchangeable in the pairs (z, y);.

= In epidemiology, @ is often called the population “rate” and x; is called
the "exposure” of unit 2.

= When dealing with mortality rates in different counties for example, x;
can be the population n; in county ¢, with & = the overall mortality rate.

= The gamma distribution is still conjugate for 6, with the resulting
posterior taking the form

m(0/{zi,yi}) : 0{zs, y;} ~ Gala + Z i, b+ Z zi).
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BDA EXAMPLE: ASTHMA MORTALITY RATE

= Consider an example on estimating asthma mortality rates for cities in
the US.

= Since actual mortality rates can be small on the raw scale, they are often
commonly estimated per 100,000 or even per one million.

= To keep it simple, let's use "per 100,000" for this example.

= For inference, ideally, we collect data which should basically count the
number of asthma-related deaths per county.

= Note that inference is by county here, so county is indexes observations
in the sample.

= Since we basically have count data, a Poisson model would be reasonable
here.
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ASTHMA MORTALITY RATE

= Since each city would be expected to have different populations, we
might consider the sampling model:

y; ~ Po(z;0); i=1,...,n.
where

= x; is the "exposure” for county 2, that is, population of county 7 is
x; X 100,000; and

= @ is the unknown "true” city mortality rate per 100,000.
= Suppose

= we pick a city in the US with population of 200,000;
= we find that 3 people died of asthma, i.e., roughly 1.5 cases per
100,000.

= Thus, we have one single observation with x; = 2 and y; = 3 for this
city.
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ASTHMA MORTALITY RATE

= Next, we need to specify a prior. What is a sensible prior here?

= Perhaps we should look at mortality rates around the world or in similar
countries.

= Suppose reviews of asthma mortality rates around the world suggest rates
above 1.5 per 100,000 are very rare in Western countries, with typical
rates around 0.6 per 100,000.

= Let's try a gamma distribution with [£[#] = 0.6 and Pr[6 > 1.5] very low!

= A few options here, but let's go with Ga(3,5), which has E[f] = 0.6 and
Pr[f > 1.5] ~ 0.02.

= Using trial-and error, explore more options in R!
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ASTHMA MORTALITY RATE

Therefore, our posterior takes the form

W(g‘{w%yZ}) : 9‘{:131,%} ~ Ga(a' + Z Yi, b+ Z CBZ)

which is actually
m(0|z,y) = Gala+ y, b+ x) = Ga(3 + 3,5+ 2) = Ga(6,7).

E[0|z,y] = 6/7 = 0.86 so that we expect less than 1 (0.86 to be exact)
asthma-related deaths per 100,000 people in this city.

In fact, the posterior probability that the long term death rate from
asthma in this city is more than 1 per 100,000, Pr[6 > 1|, y|, is 0.3.

Also, Pr[f < 2|z, y| = 0.99, so that there is very little chance that we
see more than 2 asthma-related deaths per 100,000 people in this city.

Use pgamma in R to compute the probabilities.
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PRIOR VS POSTERIOR
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Posterior is to the right of the prior since the data suggests higher mortality
rates are more likely than the prior suggests. However, we only have one

O data point!




FINDING CONJUGATE DISTRIBUTIONS
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FINDING CONJUGATE DISTRIBUTIONS

= |n the conjugate examples we have looked at so far, how did we know
the prior distributions we chose would result in conjugacy?

= Can we figure out the family of distributions that would be conjugate for
arbitrary densities?

= Let's explore this using the exponential distribution. The exponential
distribution is often used to model "waiting times" or other random
variables (with support (0, o)) often measured on a time scale.
= If y ~ Exp(6), we have the pdf
p(yl0) = 6 ¥’; y > 0.
where 0 is the rate parameter, and E[y] = 1/6.
= Recall, if Y ~ Ga(1,6), then Y ~ Exp(0). What is V[y| then?

= Let's figure out what the conjugate prior for this density would look like
(to be done on the board).
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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