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POISSON DISTRIBUTION RECAP

 denotes that each  is a Poisson random
variable.

The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

Some examples: # children, # lifetime romantic partners, # songs on
iPhone, # tumors on mouse, etc.

The Poisson distribution is parameterized by  and the pmf is given by

where

What is the joint likelihood? What is the best guess (MLE) for the Poisson
parameter? What is the sufficient statistic for the Poisson parameter?

Y1, … ,Yn
iid
∼ Poisson(θ) Yi

θ

Pr[Yi = yi|θ] = ;     yi = 0, 1, 2, … ;     θ > 0.
θyie−θ

yi!

E[Yi] = V[Yi] = θ.
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GAMMA DENSITY RECAP

The gamma density will be useful as a prior for parameters that are
strictly positive.

If , we have the pdf

where  is known as the shape parameter and , the rate parameter.

Another parameterization uses the scale parameter  instead of 
.

Some properties:

θ ∼ Ga(a, b)

p(θ) = θa−1e−bθ.
ba

Γ(a)

a b

ϕ = 1/b b

E[θ] =
a

b

V[θ] =
a

b2

Mode[θ] =   for  a ≥ 1
a − 1

b
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GAMMA DENSITY

If our prior guess of the expected count is  & we have a prior "scale" ,
we can let

and solve for , . We can play the same game if we have a prior
variance or standard deviation.

More properties:

If , then .

If , then for any , .

If , then  has an Inverse-Gamma distribution. We'll
take advantage of these soon!

μ ϕ

E[θ] = μ = ;   V[θ] = μϕ = ,
a

b

a

b2

a b

θ1, … , θp
ind
∼ Ga(ai, b) ∑i θi ∼ Ga(∑i ai, b)

θ ∼ Ga(a, b) c > 0 cθ ∼ Ga(a, b/c)

θ ∼ Ga(a, b) 1/θ
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EXAMPLE GAMMA DISTRIBUTIONS

R has the option to specify either the rate or scale parameter so always
make sure to specify correctly when using "dgamma","rgamma",etc!.
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GAMMA-POISSON

Generally, it turns out that

Poisson data:

 Gamma Prior:

 Gamma posterior:

That is, updating a gamma prior with a Poisson likelihood leads to a gamma
posterior -- we once again have conjugacy.

Can we derive the posterior distribution and its parameters? Let's do some
work on the board.

p(yi|θ) : y1, … , yn
iid
∼ Poisson(θ)

+

π(θ) = θa−1e−bθ = Ga(a, b)
ba

Γ(a)

⇒

π(θ|{yi}) : θ|{yi} ∼ Ga(a +∑ yi, b + n).

6 / 12



GAMMA-POISSON

With , we can think of

 as the "number prior of observations" from some past data, and

 as the "sum of the counts from the  prior observations".

Using the properties of the gamma distribution, we have

So, as we did with the beta-binomial, we can once again write the
posterior expectation as a weighted average of prior and data.

Again, as we get more and more data, the majority of our information
about  comes from the data as opposed to the prior.

π(θ|{yi}) = Ga(a +∑ yi, b + n)

b

a b

E[θ|{yi}] =
a +∑ yi

b + n

V[θ|{yi}] =
a +∑ yi

(b + n)2

E(θ|{yi}) = = × prior mean + × MLE.
a +∑ yi

b + n

b

b + n

n

b + n

θ
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HOFF EXAMPLE: BIRTH RATES

Survey data on educational attainment and number of children of 155
forty-year-old women during the 1990's.

These women were in their 20s during the 1970s, a period of historically
low fertility rates in the US.

Goal: compare birth rate  for women without bachelor's degrees to the
rate  for women with.

Data:

111 women without a bachelor's degree had 217 children: 

44 women with bachelor's degrees had 66 children: 

Based on the data alone, looks like  should be greater than .
But...how sure are we?

Priors:  (not much prior information; equivalent to 1
prior woman with 2 children). Posterior means will be close to the MLEs.

θ1

θ2

(ȳ1 = 1.95)

(ȳ2 = 1.50)

θ1 θ2

θ1, θ2 ∼ Ga(2, 1)
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HOFF EXAMPLE: BIRTH RATES

Then,

Use R to calculate posterior means and 95% CIs for  and .

a=2; b=1; #prior
n1=111; sumy1=217; n2=44; sumy2=66 #data
(a+sumy1)/(b+n1); (a+sumy2)/(b+n2); #post means
qgamma(c(0.025, 0.975),a+sumy1,b+n1) #95\% ci 1
qgamma(c(0.025, 0.975),a+sumy2,b+n2) #95\% ci 2

Posterior means:  and .

95% credible intervals

: [1.71, 2.22].

: [1.17, 1.89].

θ1|{n1 = 111,∑ yi,1 = 217} ∼ Ga(2 + 217, 1 + 111) = Ga(219, 112).

θ2|{n2 = 44,∑ yi,2 = 66} ∼ Ga(2 + 66, 1 + 44) = Ga(68, 45).

θ1 θ2

E[θ1|{yi,1}] = 1.955 E[θ2|{yi,2}] = 1.511

θ1

θ2
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HOFF EXAMPLE: BIRTH RATES

Prior and posteriors:
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HOFF EXAMPLE: BIRTH RATES

Posteriors indicate considerable evidence birth rates are higher among
women without bachelor's degrees.

Confirms what we observed.

Using sampling we can quickly calculate .

mean(rgamma(10000,219,112)>rgamma(10000,68,45))

We have .

Why/how does it work?

Monte Carlo approximation coming soon!

Clearly, that probability will change with different priors.

Pr(θ1 > θ2|data)

Pr(θ1 > θ2|data) = 0.97
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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