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POISSON DISTRIBUTION RECAP

jid . . :
= Y,...,Y, <~ Poisson(#) denotes that each Yj is a Poisson random
variable.

= The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

= Some examples: # children, # lifetime romantic partners, # songs on
iPhone, # tumors on mouse, etc.

= The Poisson distribution is parameterized by 6 and the pmf is given by

@Yie—?

oy, =0,1,2,...; 6>0.
where
E[Y;] = V[v;] = 6.

= What is the joint likelihood? What is the best guess (MLE) for the Poisson
parameter? What is the sufficient statistic for the Poisson parameter?
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GAMMA DENSITY RECAP

= The gamma density will be useful as a prior for parameters that are
strictly positive.

= If § ~ Ga(a,b), we have the pdf

ba
0) = 9(1—1 —b0'

where a is known as the shape parameter and b, the rate parameter.

= Another parameterization uses the scale parameter ¢ = 1/b instead of b

= Some properties:

a

" E[@] — D
£ VIO =

a—1
O = Model|f] = ; for a > 1
3/12




GAMMA DENSITY

= If our prior guess of the expected count is i & we have a prior "scale” ¢,
we can let

E6) = p =55 V6] = g = -

and solve for a, b. We can play the same game if we have a prior
variance or standard deviation.

= More properties:
" 1f 61,...,0, % Ga(a;,b), then . 8; ~ Ga(X, a;, b).

= If  ~ Ga(a,b), then forany ¢ > 0, cf ~ Ga(a,b/c).

= If @ ~ Ga(a,b), then 1/6 has an Inverse-Gamma distribution. We'll
take advantage of these soon!
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EXAMPLE GAMMA DISTRIBUTIONS
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R has the option to specify either the rate or scale parameter so always
make sure to specify correctly when using "dgamma”,"rgamma”,etc!.
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GAammA-PolIssoN

Generally, it turns out that
Poisson data:
p(Yil0) : Y1, - - -, yn - Poisson(6)
+ Gamma Prior:
b

() = m@“_le_bg = Ga(a, b)

= Gamma posterior:
w(0/{y:}) : 0/{w:} ~ Ga(a+ Y _v;,b+n).

That is, updating a gamma prior with a Poisson likelihood leads to a gamma
posterior -- we once again have conjugacy.

Can we derive the posterior distribution and its parameters? Let's do some
work on the board.
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GAammA-PolIssoN

= With 7(0|{y;}) = Ga(a+ )_ v;,b+ n), we can think of
= b as the "number prior of observations" from some past data, and

= g as the "sum of the counts from the b prior observations".

= Using the properties of the gamma distribution, we have

« Elbl ] = 4 =Y
- Vil =

= S0, as we did with the beta-binomial, we can once again write the
posterior expectation as a weighted average of prior and data.

x MLE.

a+ >y b :
= X prior mean -+

ORwi}) = =, b+ n b+ n

= Again, as we get more and more data, the majority of our information
O about @ comes from the data as opposed to the prior.
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HOFF EXAMPLE: BIRTH RATES

= Survey data on educational attainment and number of children of 155
forty-year-old women during the 1990's.

= These women were in their 20s during the 1970s, a period of historically
low fertility rates in the US.

= Goal: compare birth rate 61 for women without bachelor's degrees to the
rate @, for women with.

= Data:

= 111 women without a bachelor's degree had 217 children:
(9, = 1.95)
= 44 women with bachelor's degrees had 66 children: (¢, = 1.50)

= Based on the data alone, looks like 871 should be greater than 6.
But...how sure are we?

= Priors: 01,0, ~ Ga(2,1) (not much prior information; equivalent to 1
prior woman with 2 children). Posterior means will be close to the MLEs.
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HOFF EXAMPLE: BIRTH RATES

Then,

01|{ny = 111, 51 = 217} ~ Ga(2 + 217,1 + 111) = Ga(219,112).
. 02‘{72,2 = 44, Z Yi2 = 66} ~ Ga(2 + 66, 1+ 44) = Ga(68, 45)

Use R to calculate posterior means and 95% Cls for 61 and 0.

a=2; b=1; #prior

nl=111; sumyl=217; n2=44; sumy2=66 #data
(at+sumyl)/(b+nl); (at+sumy2)/(b+n2); #post means
ggamma(c(0.025, 0.975),a+sumyl,b+nl) #95\% c7 1
ggamma(c(0.025, 0.975),a+sumy2,b+n2) #95\% ci 2

Posterior means: E[6;|{y;1}] = 1.955 and E[0>|{y;2}] = 1.511.

95% credible intervals

= 6;: [1.71, 2.22].
= 0y: [1.17, 1.89].
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HOFF EXAMPLE: BIRTH RATES

Prior and posteriors:
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HOFF EXAMPLE: BIRTH RATES

= Posteriors indicate considerable evidence birth rates are higher among
women without bachelor's degrees.

= Confirms what we observed.

= Using sampling we can quickly calculate Pr(6; > 6;|data).
mean (rgamma (10000,219,112)>rgamma(10000,68,45))
We have Pr(6; > 6,|data) = 0.97.

= Why/how does it work?
= Monte Carlo approximation coming soon!

= Clearly, that probability will change with different priors.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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