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MARGINAL LIKELIHOOD

= Recall that the marginal likelihood is
L(y) = f(y1,- -, Yn) :/f(yl,---,yn|0)7r(0)d9=/L(0|y)7r(9)d9.
(€] (C)

= For clarity, when dealing with a single y instead of vy, ..., y,, we can
write

L(y) = f(y) = /@ F(4]0)n(6)d8 = /@ L(Bly)(6)de.

= When this is the case, for example in the case of the binomial
distribution, | will often write

= the marginal likelihood as L(y) or f(y), and

= the sampling (conditional) likelihood as f(y|6) or L(6|y).
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MARGINAL LIKELIHOOD

= What is the marginal likelihood for the beta-binomial?

= We have
L(y) = /@ p(y10)7(6)d9

_ / 1 (Z) 0'(1— 6" (i 00 s
B On B(a+y,b+n—y),
N (y> B(a,b) ’

by the integral definition of the Beta function.
= Marginal likelihood for the beta-Bernoulli follows directly.

= Deriving the marginal likelihood for conjugate distributions is often
relatively straightforward.



PRIOR PREDICTIVE DISTRIBUTION

= We may care about making predictions before we even see any data.

= This is often useful as a way to see if the sampling distribution we have
chosen is appropriate, after integrating out all unknown parameters.

= The prior predictive distribution is

p(y) = /e p(y, 6) d6
- /@ p(y]6) - (8) db.

= |n some sense, the prior predictive distribution marginalizes the sampling
distribution (for a single y) over the prior.

= When dealing with a single y instead of y1, ..., Yy, this is just the
marginal likelihood of the data.
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POSTERIOR PREDICTIVE DISTRIBUTION

= We often care about making predictions for new data points, given the
current pbserved data.

= For example, suppose yi, . .., Yy, ud Bernoulli(6).
= We may wish to predict a new data point Y, 1.
= We can do so using the posterior predictive distribution p(Y,11|Y1:n)-

= Why are we not including the parameter in the posterior predictive
distribution?
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POSTERIOR PREDICTIVE DISTRIBUTION

» Recall that we have conditional independence of the y's given 6.

= So,

p(yn+1|y1:n) — /@p(yn—i—ly 0|y1:n) d9

= / p(yn+1|07 yl:n) : 77(0|ylzn) df
(C)

- / P(yn:1/6) - 7(Oly1n) db.
(€]

= S0, in some sense, the posterior predictive distribution marginalizes the
sampling distribution over the posterior.




POSTERIOR PREDICTIVE DISTRIBUTION

= When we talk about the posterior predictive distribution for Bernoulli
data, we are really referring to p(yn+1 = 1|y1:n) and p(yn+1 = 0|y1:n)-

= Then,

D(gnsr = Ljyam) = / P(yns1 = 1/6) - 7(Bly1) dB
(C)

which simplifies to what? To be done on the board!
= What then is p(yn+1 = 0|y1.1)?

m Posterior predictive pmf therefore takes the form

1—
a%nﬂ bn Ynt1

; = (01, 1L
a, +b, G

P(yn+1 |y1:n) =

= What are a,, and b,,?




GOING FORWARD...

= From here on, we will often deal with multiple data points y1,...,Yyn
frequently.

= To make that obvious, we will write the Bayes rule as one of the
following

77(9) 'p(y17 cee 7yn’9)

m(0y1,...,yn) = _ )
o " f@ﬂ'(e) p(y1,.--,Yn|0)dO
7Oyt ) = D) 22 ¥nl6)
p(yl""ayn)
_ #(0)- Lol)
w(0ly) =~

where y = (Y1,...,Yn)-




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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