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MARGINAL LIKELIHOOD

Recall that the marginal likelihood is

For clarity, when dealing with a single  instead of , we can
write

When this is the case, for example in the case of the binomial
distribution, I will often write

the marginal likelihood as  or , and

the sampling (conditional) likelihood as  or .

L(y) = f(y1, … , yn) = ∫
Θ

f(y1, … , yn|θ)π(θ)dθ = ∫
Θ

L(θ|y)π(θ)dθ.

y y1, … , yn

L(y) = f(y) = ∫
Θ

f(y|θ)π(θ)dθ = ∫
Θ

L(θ|y)π(θ)dθ.

L(y) f(y)

f(y|θ) L(θ|y)
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MARGINAL LIKELIHOOD

What is the marginal likelihood for the beta-binomial?

We have

by the integral definition of the Beta function.

Marginal likelihood for the beta-Bernoulli follows directly.

Deriving the marginal likelihood for conjugate distributions is often
relatively straightforward.

L(y) = ∫
Θ

p(y|θ)π(θ)dθ

= ∫
1

0

( )θy(1 − θ)n−y θa−1(1 − θ)b−1dθ

= ( ) ,

n

y

1

B(a, b)

n

y

B(a + y, b + n − y)

B(a, b)
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PRIOR PREDICTIVE DISTRIBUTION

We may care about making predictions before we even see any data.

This is often useful as a way to see if the sampling distribution we have
chosen is appropriate, after integrating out all unknown parameters.

The prior predictive distribution is

In some sense, the prior predictive distribution marginalizes the sampling
distribution (for a single y) over the prior.

When dealing with a single  instead of , this is just the
marginal likelihood of the data.

p(y) = ∫
Θ

p(y, θ) dθ

= ∫
Θ

p(y|θ) ⋅ π(θ) dθ.

y y1, … , yn
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POSTERIOR PREDICTIVE DISTRIBUTION

We often care about making predictions for new data points, given the
current pbserved data.

For example, suppose .

We may wish to predict a new data point .

We can do so using the posterior predictive distribution .

Why are we not including the parameter in the posterior predictive
distribution?

y1, … , yn
iid
∼ Bernoulli(θ)

yn+1

p(yn+1|y1:n)
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POSTERIOR PREDICTIVE DISTRIBUTION

Recall that we have conditional independence of the 's given .

So,

So, in some sense, the posterior predictive distribution marginalizes the
sampling distribution over the posterior.

y θ

p(yn+1|y1:n) = ∫
Θ

p(yn+1, θ|y1:n) dθ

= ∫
Θ

p(yn+1|θ, y1:n) ⋅ π(θ|y1:n) dθ

= ∫
Θ

p(yn+1|θ) ⋅ π(θ|y1:n) dθ.
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POSTERIOR PREDICTIVE DISTRIBUTION

When we talk about the posterior predictive distribution for Bernoulli
data, we are really referring to  and .

Then,

which simplifies to what? To be done on the board!

What then is ?

Posterior predictive pmf therefore takes the form

What are  and ?

p(yn+1 = 1|y1:n) p(yn+1 = 0|y1:n)

p(yn+1 = 1|y1:n) = ∫
Θ

p(yn+1 = 1|θ) ⋅ π(θ|y1:n) dθ

=. . .

=. . .

p(yn+1 = 0|y1:n)

p(yn+1|y1:n) = ;    yn+1 = 0, 1.
a
yn+1
n b

1−yn+1
n

an + bn

an bn
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GOING FORWARD...
From here on, we will often deal with multiple data points 
frequently.

To make that obvious, we will write the Bayes rule as one of the
following

where .

y1, … , yn

π(θ|y1, … , yn) =

π(θ|y1, … , yn) =

π(θ|y) = ,

π(θ) ⋅ p(y1, … , yn|θ)

∫Θ π(
~
θ) ⋅ p(y1, … , yn|

~
θ)d

~
θ

π(θ) ⋅ p(y1, … , yn|θ)

p(y1, … , yn)

π(θ) ⋅ L(θ|y)

L(y)

y = (y1, … , yn)
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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