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OUTLINE

= QOperationalizing data analysis
= Example: rare events

m Selecting priors and potential problems




OPERATIONALIZING DATA ANALYSIS

How should we approach data analysis in general?

= Step 1. State the question.

Step 2. Collect the data.

Step 3. Explore the data.

Step 4. Formulate and state a modeling framework.

Step 5. Check your models.

Step 6. Answer the question.
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EXAMPLE: RARE EVENTS

= Step 1. State the question:

= What is the prevalence of an infectious disease in a small city?

= Why? High prevalence means more public health precautions are
recommended.

= Step 2. Collect the data:
= Suppose you collect a small random sample of 20 individuals.
= Step 3. Explore the data:

= Let Y denote the unknown number of infected individuals in the
sample.
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EXAMPLE: RARE EVENTS

= Step 4. Formulate and state a modeling framework:

= Parameter of interest: @ is the fraction of infected individuals in the
city.

= Sampling model: a reasonable model for Y can be Bin(20, 6)
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EXAMPLE: RARE EVENTS

= Step 4. Formulate and state a modeling framework:

= Prior specification: information from previous studies — infection
rate in “comparable cities” ranges from 0.05 to 0.20 with an average
of 0.10. So maybe a standard deviation of roughly 0.05?

= What is a good prior? The expected value of 8 close to 0.10 and the
standard deviation close to 0.05.

= Possible option: Beta(3.5,31.5) or maybe even Beta(3, 32)?
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QUICK BETA-BINOMIAL RECAP

= Binomial likelihood:

p(ylf) = (Z) 0v(1— )" Y

= |+ Beta Prior:

1
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= —> Beta posterior:
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EXAMPLE: RARE EVENTS

= Step 4. Formulate and state a modeling framework:
= Under Beta(3, 32), Pr(f < 0.1) ~ 0.67.

m Posterior distribution for the model:
w(0]Y = y) = Beta(a +y,b+n — y)

= Suppose Y = 0. Then, 7(8|Y = y) = Beta(3, 32 + 20)
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EXAMPLE: RARE EVENTS

= Step 5. Check your models:

= Compare performance of posterior mean and posterior probability
that 6 < 0.1.

= Under Beta(3,52),

» Pr(6 < 0.1]Y = y) =~ 0.92. More confidence in low values of 6.
= For E(0]Y = y), we have

a—+y 3
E(6]y) = — 2 _ 0.055.
Oly) = To7n ~ 35 ~ 0095

= Recall that the prior mean is a/(a 4+ b) = 0.09. Thus, we can
see how that contributes to the prior mean.
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EXAMPLE: RARE EVENTS

= Step 6. Answer the question:

= People with low prior expectations are generally at least 90%
certain that the infection rate is below 0.10.

= 7(0]Y) is to the left of 7(#) because the observation Y = 0
provides evidence of a low value of 6.

= 7(0]Y) is more peaked than 7(6) because it combines information
and so contains more information than 7(6) alone.

= The posterior expectation is 0.055.

= The posterior mode is 0.04.
= Note, for Beta(a, b), the mode is (a — 1)/(a + b — 2).
= The posterior probability that 8 < 0.1 is 0.92.
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CAUTIONARY TALE: PARAMETERS AT THE
BOUNDARY

= Tuyl et al. (2008) discuss potential dangers of using priors that have
a < 1 with data that are all 0's (or b < 1 with all 1's). They consider data
on adverse reactions to a new radiological contrast agent.

= Let O: probability of a bad reaction using the new agent.

= Current standard agent causes bad reactions about 15 times in 10000, so
one might think 0.0015 is a good guess for 0.

= How do we choose a prior distribution?
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POTENTIAL PRIOR DISTRIBUTIONS

= One might consider a variety of choices centered on
15/10000 = 0.0015:

= Prior 1: Beta(1,666) (mean 0.0015; 1 prior bad reaction in 667
administrations)

= Prior 2: Beta(0.05,33.33) (mean 0.0015; 0.05 prior bad reactions in
33.38 administrations)

= Prior 3: Beta(1.6, 407.4) (mode 0.0015; 409 prior administrations)

= Prior 4: Beta(1.05, 497) (median 0.0015; 498.05 prior
administrations)

m Does it matter which one we choose?
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POTENTIAL PRIOR DISTRIBUTIONS
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POTENTIAL PRIOR DISTRIBUTIONS

Let's zoom in:
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POTENTIAL PRIOR DISTRIBUTIONS

= Let's take a closer look at properties of these four prior distributions,
concentrating on the probability that O < 0.0015.

= That is, new agent not more dangerous than old agent.

Be(1,666) Be(0.05,33.33) Be(1.6,407.4) Be(1.05,497)

Prior prob 0.632 0.882 0.222 0.500
FEEE I (0 0.683 0.939 0.289 0.568
events)
Post prob (1 0.319 0.162 0.074 0.213
event)

= Suppose we have a single arm study of 100 subjects.
= Consider the two most likely potential outcomes:

» (0 adverse outcomes observed
= 1 adverse outcome observed
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PROBLEMS WITH THE PRIORS

= After just 100 trials with no bad reactions, the low weight (33.38 prior
observations) prior indicates one should be 94% sure the new agent is
equally safe as (or safer than) the old one.

= The low weight prior largely assumes the conclusion we actually hope for
(that the new agent is safer), thus it takes very little confirmatory data
to reach that conclusion.

» |s this the behavior we want?

= Take home message: be very careful with priors that have a < 1 with
data that are all O's (or b < 1 with all 1's).

= Given that we know the adverse event rate should be small, we might try
a restricted prior e.g. Unif(0,0.1).
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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