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BUILDING BLOCKS OF BAYESIAN INFERENCE

= Generally (unless otherwise stated), in this course, we will use the
following notation. Let

= ) be the sample space;
= y be the observed data;
= O be the parameter space; and
= 0 be the parameter of interest.

= More to come later.
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FREQUENTIST INFERENCE

= Given data y, estimate the population parameter 6.
= How to estimate 6 under the frequentist paradigm?
= Maximum likelihood estimate (MLE)
= Method of moments
= and so on...

= Frequentist ML estimation finds the one value of € that maximizes the
likelihood.

= Typically uses large sample (asymptotic) theory to obtain confidence
intervals and do hypothesis testing.
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WHAT ARE BAYESIAN METHODS?

= Bayesian methods are data analysis tools derived from the principles of
Bayesian inference and provide

= parameter estimates with good statistical properties;
= parsimonious descriptions of observed data;
m predictions for missing data and forecasts of future data; and

= a computational framework for model estimation, selection, and
validation.
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BAYES' THEOREM - BASIC CONDITIONAL
PROBABILITY

= Let's take a step back and quickly review the basic form of Bayes'
theorem.

= Suppose there are some events A and B having probabilities Pr(A) and
Pr(B).

= Bayes' rule gives the relationship between the marginal probabilities of A
and B and the conditional probabilities.

= |n particular, the basic form of Bayes' rule or Bayes' theorem is

Pr(Aand B) Pr(B|A)Pr(A)
PrliB) = =53~ P

Pr(A) = marginal probability of event A, Pr(B|A) = conditional
probability of event B given event A, and so on.
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BUILDING BLOCKS OF BAYESIAN INFERENCE

= Now, to a slightly more complicated version of Bayes' rule. First,

1. For each 6 € ©, specify a prior distribution p(8) or m(6), describing
our beliefs about 6 being the true population parameter.

2. For each § € © and y € Y, specify a sampling distribution p(y|0),
describing our belief that the data we see y is the outcome of a
study with true parameter 6. p(y|0) gets us the likelihood L(0|y).

3. After observing the data y, for each 6 € ©, update the prior
distribution to a posterior distribution p(6|y) or w(8|y), describing
our "updated” belief about @ being the true population parameter.

= Now, how do we get from Step 1 to 3?7 Bayes' rule!

p(0)p(y|0) p(0)p(y|6)
Jop(0)p(y|6)dd p(y)
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We will use this over and over throughout the course!
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NOTES ON PRIOR DISTRIBUTIONS

Many types of priors may be of interest. These may
= represent our own beliefs;
= represent beliefs of a variety of people with differing prior opinions; or

= assign probability more or less evenly over a large region of the
parameter space.

= and so on...




NOTES ON PRIOR DISTRIBUTIONS

= Subjective Bayes: a prior should accurately quantify some individual's
beliefs about 6.

= Objective Bayes: the prior should be chosen to produce a procedure with
"good" operating characteristics without including subjective prior
knowledge.

m Weakly informative: prior centered in a plausible region but not overly-
informative, as there is a tendency to be over confident about one's
beliefs.
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NOTES ON PRIOR DISTRIBUTIONS

= The prior quantifies your initial uncertainty in 6 before you observe new
data (new information) - this may be necessarily subjective & summarize
experience in a field or prior research.

= Even if the prior is not "perfect”, placing higher probability in a ballpark
of the truth leads to better performance.

= Hence, it is very seldom the case that a weakly informative prior is not
preferred over no prior.

= One (very important) role of the prior is to stabilize estimates in the
presence of limited data.
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SIMPLE EXAMPLE - ESTIMATING A POPULATION
PROPORTION

= Suppose 6 € (0,1) is the population proportion of individuals with
diabetes in the US.

= A prior distribution for @ would correspond to some distribution that
distributes probability across (0, 1).

= A very precise prior corresponding to abundant prior knowledge would be
concentrated tightly in a small sub-interval of (0, 1).

= A vague prior may be distributed widely across (O, 1) - e.g., a uniform
distribution would be the common choice here.

10/ 13



SOME POSSIBLE PRIOR DENSITIES
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BETA PRIOR DENSITIES

= These four priors correspond to Beta(1,1) (also Unif(0, 1)),
Beta(1, 10), Beta(2, 10) and Beta(5, 50) densities.

= Beta(a,b) is a probability density function (pdf) on (0,1),

. 1 a—1 _ p\b-1
m(0) = = oD 0 11— )",
where B(a, b) = beta function = normalizing constant ensuring the kernel
integrates to one. Note: some texts write beta(a, ) instead.

= The beta(a,b) distribution has expectation E[#] = a/(a + b) and the

density becomes more and more concentrated as a + b = prior "sample
size" increases.

= The variance V[0] = ab/[(a + b)*(a + b + 1)].

= We will look more carefully into the beta-binomial model soon but first,
we will explore how this prior gets updated as data becomes available,
during the online discussion session.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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